
NAG Library

Introduction to the NAG Library for SMP & Multicore

1 What is the NAG Library for SMP & Multicore?

The NAG Library for SMP & Multicore is a library of numerical routines intended for use on Symmetric
Multiprocessor (SMP) machines, which are characterised by having both:

– a number of homogeneous processors (which may also be referred to as cores);

– a cache-coherent (real or virtual) shared memory accessible by all the processors (or cores).

Most current processors are multicore, i.e., they include more than one core on each chip. The vast
majority of these have the necessary characteristics to be programmed with SMP techniques, and thus
would be suitable for use with the NAG Library for SMP & Multicore. A small number of more
specialised multicore processors cannot be used in this manner, and thus are not suitable for use with the
NAG Library for SMP & Multicore. If in doubt, please contact NAG for advice on suitability.

The NAG Library for SMP & Multicore contains the full functionality currently available in the NAG
Fortran Library, and users are encouraged to familiarise themselves with the Essential Introduction for a
general overview of the structure of these products. Routine interfaces are mostly identical to those of the
NAG Fortran Library (see Section 2.2 for details of the few differences that do exist). This makes the
migration from using the NAG Fortran Library to using the NAG Library for SMP & Multicore trivial.

Many routines have been specially tuned for this Library to make use of the processing power and shared
memory parallelism of SMP systems. Many other routines in the NAG Library for SMP & Multicore
benefit from this increased performance by calling one or more of the tuned routines.

The list of routines that may benefit from SMP parallelism is listed in the ‘Tuned and Enhanced Routines
in the NAG Library for SMP & Multicore’ document, and includes many key routines in the areas of:

Dense and Sparse Linear Algebra

FFTs

Random Number Generators

Quadrature

Partial Differential Equations

Interpolation

Curve and Surface Fitting

Correlation and Regression Analysis

Multivariate Methods

Time Series Analysis

Financial Option Pricing

Global Optimization

Wavelet Transforms

Matrix Functions

At each new Mark of the Library, we seek to expand the scope of parallelism to as many additional
routines as possible, as well as incorporating new functionality introduced in the equivalent Mark of the
NAG Fortran Library. Details of changes to the Library in the current Mark are available in the ‘Mark 24
NAG Library for SMP & Multicore News’ document.

Introduction Introduction to the NAG Library for SMP & Multicore

Mark 24 SMPINT.1

1.1 Parallel Technology used within the NAG Library for SMP & Multicore

Parallelism within the NAG Library for SMP & Multicore is implemented using OpenMP, a portable API
for shared memory programming that is available in many different compilers on a wide range of different
hardware platforms. In general, users do not need to be aware of the specifics of how this is used within
the library, beyond the additional steps needed to link, execute and get best performance from your code
documented in Sections 2.1 and 2.2 below. However, users who are interested in the details of OpenMP
should consult the documentation on the OpenMP website for further information.

Users who are calling NAG routines from within another threading mechanism need to be aware of
whether or not this threading mechanism is compatible with OpenMP on their platform(s) of choice. The
Users’ Note document for each of the implementations in question will include some guidance on this, and
users should contact NAG for further advice if required.

2 How to Use the NAG Library for SMP & Multicore

2.1 Linking and Executing Your Code

If your code currently contains calls to NAG Fortran Library routines then for most parallelized routines it
is a simple matter of relinking your code to the NAG Library for SMP & Multicore (in place of the NAG
Fortran Library) to benefit from the optimized performance. Exceptions to this general rule, where code
changes may be necessary, are noted in Section 2.2 below.

Parallelism is requested by setting the appropriate environment variable (usually OMP_NUM_THREADS)
to the desired number of threads you wish the routines to run on and then running your linked code.
Generally the number of threads requested should not be more than the number of available (idle) cores on
your system.

The steps required when compiling, linking and running programs on SMP machines, in order to fully
exploit your parallelism are very much implementation specific. The particular details for your
implementation are given in the Users’ Note which should be read carefully before using the NAG Library
for SMP & Multicore.

More general information regarding the conventions used in this Library is provided in the Essential
Introduction.

2.2 How to Maximize the Performance of Your Application

There are a number of things you should consider when trying to maximize the performance of your code
when linking to this Library. In the first instance you should be aware of the functionality of the Library
and of which routines you should expect to achieve good levels of performance and scalability; for this
you should consult the Tuned and Enhanced Routines in the NAG Library for SMP & Multicore
document. There may be sections of your code which reproduce the functionality of a tuned/enhanced
NAG routine or vendor BLAS routine; in such cases you should replace your sections of code with calls to
the appropriate routines.

Note that the performance increase achieved, if any, when calling one of the tuned or enhanced routines
will vary depending upon which routine is called, problem sizes and other parameters, system design and
operating system configuration. If you frequently call a routine with similar data sizes and other
parameters, it may be worthwhile to experiment with different numbers of threads, to determine the choice
that gives optimal performance. Please contact NAG for further advice if required.

In addition there are areas of the NAG Library for SMP & Multicore that require further guidance, please
see the following sections.

2.2.1 FFTs (Chapter C06)

In many implementations the vendors supply their own FFT routines that are optimized for their particular
platforms. Where possible the NAG FFT routines call these vendor routines for optimal performance.
Note that on some platforms additional workspace may be required compared to that listed in the Chapter
C06 routine document. For details see the Users’ Note for your implementation.

Introduction to the NAG Library for SMP & Multicore NAG Library Manual

SMPINT.2 Mark 24

2.2.2 Quadrature (Chapter D01)

The performance of the quadrature routines in Chapter D01 depends upon the nature of the user-supplied
function that calculates the value of the integrand at a given point and other problem parameters such as
the relative accuracy required. Parallelism may not be beneficial for all problems, in particular the
parallelism in D01GAF is only suitable for problems with a large number of data points.

2.2.3 PDEs (Chapter D03)

D03RAF and D03RBF require a user-supplied routine PDEDEF to evaluate the functions Fj, for
j ¼ 1; 2; . . . ;NPDE. The parallelism within D03RAF and D03RBF will be more efficient if PDEDEF can
also be parallelized. This is often the case, but you must add some OpenMP directives to your version of
PDEDEF to implement the parallelism. For example, the body of code from the first test case in the
document for D03RAF is

res(1:npts,1:npde) = ut(1:npts,1:npde) - diffusion*(uxx(1:npts,1: &
npde)+uyy(1:npts,1:npde)) - damkohler*(one+heat_release-u(1:npts, &
1:npde))*exp(-activ_energy/u(1:npts,1:npde))

This example can be parallelized, as the updating of RES in each iteration of the loop I over 1; . . . ;NPTS
is independent of every other iteration. Thus this should be parallelized in OpenMP as follows

!$OMP DO
Do i = 1, npts

res(i,1:npde) = ut(i,1:npde) -diffusion*(uxx(i,1:npde)+uyy(i,1:npde &
)) - damkohler*(1.0E0_nag_wp+heat_release-u(i,1:npde))*exp(- &
activ_energy/u(i,1:npde))

End Do
!$OMP END DO

Note that the OpenMP PARALLEL directive must not be specified, as the OpenMP DO directive will bind
to the PARALLEL region within the D03RAF or D03RBF code. Also note that this assumes the default
OpenMP behaviour that all variables are SHARED, except for loop indices that are PRIVATE.

To avoid problems for existing library users, who will not have specified any OpenMP directives in their
PDEDEF routine, the default assumption of D03RAF and D03RBF is that PDEDEF has not been
parallelized, and they execute calls to PDEDEF in serial mode. You must indicate this fact by using the
argument IND to D03RAF and D03RBF by adding 10 to the normal value. Thus, in the NAG Library for
SMP & Multicore only, the following values may be specified for IND:

IND ¼ 0
Starts the integration in time. PDEDEF is assumed to be serial.

IND ¼ 1
Continues the integration after an earlier exit from the routine. In this case, only the following
parameters may be reset between calls to D03RAF or D03RBF: TOUT, DT, TOLS, TOLT, OPTI,
OPTR, ITRACE and IFAIL. PDEDEF is assumed to be serial.

IND ¼ 10
Starts the integration in time. PDEDEF is assumed to have been parallelized by you, as described
above. In all other respects, this is equivalent to IND ¼ 0.

IND ¼ 11
Continues the integration after an earlier exit from the routine. In this case, only the following
parameters may be reset between calls to D03RAF or D03RBF: TOUT, DT, TOLS, TOLT, OPTI,
OPTR, ITRACE and IFAIL. PDEDEF is assumed to have been parallelized by you, as described
above. In all other respects, this is equivalent to IND ¼ 1.

Constraint: 0 � IND � 1 or 10 � IND � 11.

On exit: IND ¼ 1, if IND on input was 0 or 1, or IND ¼ 11, if IND on input was 10 or 11.

If the code within PDEDEF cannot be parallelized, you must not add any OpenMP directives to your code,
and must not set IND to 10 or 11. If IND is set to 10 or 11 and PDEDEF has not been parallelized,
results on multiple threads will be unpredictable and may give rise to incorrect results and/or program
crashes or deadlocks. Please contact NAG for advice if required. Overloading IND in this manner is not

Introduction Introduction to the NAG Library for SMP & Multicore

Mark 24 SMPINT.3

entirely satisfactory, consequently it is likely that replacement interfaces for D03RAF and D03RBF will be
included in a future NAG Library release.

Modified example programs for D03RAF and D03RBF, which include parallel versions of the PDEDEF
routines, are included in the distribution material for each implementation of the NAG Library for SMP &
Multicore.

2.2.4 Global Optimization of a Function (Chapter E05)

Users of the Particle Swarm Optimization (PSO) routines in the NAG Library for SMP & Multicore need
to be aware of several additional SMP-specific options they need to set, in particular, to state whether or
not they have ensured that the user functions they provide to these routines are implemented in a thread-
safe manner. See the routine documents for E05SAF and E05SBF for details.

2.2.5 Sparse Iterative Solvers (Chapter F11)

When running the sparse iterative solvers with preconditioning on multiple processors, it may be beneficial
to reduce the action of the preconditioner, e.g., by decreasing LFILL, or by increasing DTOL with
LFILL < 0 in F11DAF or F11JAF. This will tend to increase the number of iterations required to obtain a
converged solution, but will also allow a greater percentage of the computational work to be spent in the
parallelized iterative solvers, resulting in a lower overall time to solution. There is unfortunately no choice
of the various preconditioner parameters which is optimal for all types of matrix, and all numbers of
processors, and some experimentation will generally be required for each new type of matrix encountered.

2.2.6 Quasi-random number generators (Chapter G05)

The Sobol, Sobol (A659) and Niederreiter quasi-random number generators in G05YMF have been
parallelized, but require quite large problem sizes to see any significant performance gain. Parallelism is
only enabled for the RCORD ¼ 2 option.

3 References

OpenMP The OpenMP Specification for Parallel Programming http://www.openmp.org

Introduction to the NAG Library for SMP & Multicore NAG Library Manual

SMPINT.4 (last) Mark 24

	Introduction to the NAG Library for SMP & Multicore
	1 What is the NAG Library for SMP & Multicore?
	1.1 Parallel Technology used within the NAG Library for SMP & Multicore

	2 How to Use the NAG Library for SMP & Multicore
	2.1 Linking and Executing Your Code
	2.2 How to Maximize the Performance of Your Application
	2.2.1 FFTs (Chapter C06)
	2.2.2 Quadrature (Chapter D01)
	2.2.3 PDEs (Chapter D03)
	2.2.4 Global Optimization of a Function (Chapter E05)
	2.2.5 Sparse Iterative Solvers (Chapter F11)
	2.2.6 Quasi-random number generators (Chapter G05)

	3 References

	NAG Fortran Library Manual, Mark 24
	Copyright Statement
	Foreword
	Introduction
	Essential Introduction
	NAG Fortran Library specific documentation
	 NAG Fortran Library News

	NAG SMP Library specific documentation
	Introduction to the NAG Library for SMP & Multicore
	 NAG Library for SMP & Multicore News
	Tuned and Enhanced Routines in the

	Thread Safety
	Routines Withdrawn or Scheduled for Withdrawal
	Advice on Replacement Calls for Withdrawn/Superseded Routines
	Acknowledgements
	Indexes

	Implementation-specific Details for Users
	Chapters of the Library
	A00 - Library Identification
	A00 Chapter Introduction

	A02 - Complex Arithmetic
	A02 Chapter Introduction

	C02 - Zeros of Polynomials
	C02 Chapter Introduction

	C05 - Roots of One or More Transcendental Equations
	C05 Chapter Introduction

	C06 - Summation of Series
	C06 Chapter Introduction

	C09 - Wavelet Transforms
	C09 Chapter Introduction

	D01 - Quadrature
	D01 Chapter Introduction

	D02 - Ordinary Differential Equations
	D02 Chapter Introduction

	D03 - Partial Differential Equations
	D03 Chapter Introduction

	D04 - Numerical Differentiation
	D04 Chapter Introduction

	D05 - Integral Equations
	D05 Chapter Introduction

	D06 - Mesh Generation
	D06 Chapter Introduction

	E01 - Interpolation
	E01 Chapter Introduction

	E02 - Curve and Surface Fitting
	E02 Chapter Introduction

	E04 - Minimizing or Maximizing a Function
	E04 Chapter Introduction

	E05 - Global Optimization of a Function
	E05 Chapter Introduction

	F - Linear Algebra
	F Chapter Introduction

	F01 - Matrix Operations, Including Inversion
	F01 Chapter Introduction

	F02 - Eigenvalues and Eigenvectors
	F02 Chapter Introduction

	F03 - Determinants
	F03 Chapter Introduction

	F04 - Simultaneous Linear Equations
	F04 Chapter Introduction

	F05 - Orthogonalization
	F05 Chapter Introduction

	F06 - Linear Algebra Support Routines
	F06 Chapter Introduction

	F07 - Linear Equations (LAPACK)
	F07 Chapter Introduction

	F08 - Least Squares and Eigenvalue Problems (LAPACK)
	F08 Chapter Introduction

	F11 - Large Scale Linear Systems
	F11 Chapter Introduction

	F12 - Large Scale Eigenproblems
	F12 Chapter Introduction

	F16 - Further Linear Algebra Support Routines
	F16 Chapter Introduction

	G01 - Simple Calculations on Statistical Data
	G01 Chapter Introduction

	G02 - Correlation and Regression Analysis
	G02 Chapter Introduction

	G03 - Multivariate Methods
	G03 Chapter Introduction

	G04 - Analysis of Variance
	G04 Chapter Introduction

	G05 - Random Number Generators
	G05 Chapter Introduction

	G07 - Univariate Estimation
	G07 Chapter Introduction

	G08 - Nonparametric Statistics
	G08 Chapter Introduction

	G10 - Smoothing in Statistics
	G10 Chapter Introduction

	G11 - Contingency Table Analysis
	G11 Chapter Introduction

	G12 - Survival Analysis
	G12 Chapter Introduction

	G13 - Time Series Analysis
	G13 Chapter Introduction

	H - Operations Research
	H Chapter Introduction

	M01 - Sorting and Searching
	M01 Chapter Introduction

	S - Approximations of Special Functions
	S Chapter Introduction

	X01 - Mathematical Constants
	X01 Chapter Introduction

	X02 - Machine Constants
	X02 Chapter Introduction

	X03 - Inner Products
	X03 Chapter Introduction

	X04 - Input/Output Utilities
	X04 Chapter Introduction

	X05 - Date and Time Utilities
	X05 Chapter Introduction

	X07 - IEEE Arithmetic
	X07 Chapter Introduction

