
NAG Library Routine Document

C02AFF

Note: before using this routine, please read the Users’ Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

C02AFF finds all the roots of a complex polynomial equation, using a variant of Laguerre’s method.

2 Specification

SUBROUTINE C02AFF (A, N, SCAL, Z, W, IFAIL)

INTEGER N, IFAIL
REAL (KIND=nag_wp) A(2,N+1), Z(2,N), W(4*(N+1))
LOGICAL SCAL

3 Description

C02AFF attempts to find all the roots of the nth degree complex polynomial equation

P zð Þ ¼ a0z
n þ a1z

n�1 þ a2z
n�2 þ � � � þ an�1zþ an ¼ 0:

The roots are located using a modified form of Laguerre’s method, originally proposed by Smith (1967).

The method of Laguerre (see Wilkinson (1965)) can be described by the iterative scheme

L zkð Þ ¼ zkþ1 � zk ¼
�nP zkð Þ

P 0 zkð Þ �
ffiffiffiffiffiffiffiffiffiffiffiffiffi
H zkð Þ

p ;

where H zkð Þ ¼ n� 1ð Þ n� 1ð Þ P 0 zkð Þð Þ2 � nP zkð ÞP 00 zkð Þ
h i

and z0 is specified.

The sign in the denominator is chosen so that the modulus of the Laguerre step at zk, viz. L zkð Þj j, is as
small as possible. The method can be shown to be cubically convergent for isolated roots (real or
complex) and linearly convergent for multiple roots.

The routine generates a sequence of iterates z1; z2; z3; . . . , such that P zkþ1ð Þj j < P zkð Þj j and ensures that
zkþ1 þ L zkþ1ð Þ ‘roughly’ lies inside a circular region of radius Fj j about zk known to contain a zero of
P zð Þ; that is, L zkþ1ð Þj j � Fj j, where F denotes the Fejér bound (see Marden (1966)) at the point zk.
Following Smith (1967), F is taken to be min B; 1:445nRð Þ, where B is an upper bound for the
magnitude of the smallest zero given by

B ¼ 1:0001�min
ffiffiffi
n
p

L zkð Þ; r1j j; an=a0j j1=n
� �

;

r1 is the zero X of smaller magnitude of the quadratic equation

P 00 zkð Þ
2n n� 1ð ÞX

2 þ P
0 zkð Þ
n

X þ 1
2P zkð Þ ¼ 0

and the Cauchy lower bound R for the smallest zero is computed (using Newton’s Method) as the
positive root of the polynomial equation

a0j jzn þ a1j jzn�1 þ a2j jzn�2 þ � � � þ an�1j jz� anj j ¼ 0:

Starting from the origin, successive iterates are generated according to the rule zkþ1 ¼ zk þ L zkð Þ, for
k ¼ 1; 2; 3; . . . , and L zkð Þ is ‘adjusted’ so that P zkþ1ð Þj j < P zkð Þj j and L zkþ1ð Þj j � Fj j. The iterative
procedure terminates if P zkþ1ð Þ is smaller in absolute value than the bound on the rounding error in
P zkþ1ð Þ and the current iterate zp ¼ zkþ1 is taken to be a zero of P zð Þ. The deflated polynomial
~P zð Þ ¼ P zð Þ= z� zp

� �
of degree n� 1 is then formed, and the above procedure is repeated on the
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deflated polynomial until n < 3, whereupon the remaining roots are obtained via the ‘standard’ closed
formulae for a linear (n ¼ 1) or quadratic (n ¼ 2) equation.

Note that C02AHF, C02AMF and C02ANF can be used to obtain the roots of a quadratic, cubic (n ¼ 3)
and quartic (n ¼ 4) polynomial, respectively.

4 References
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Providence, RI
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Wilkinson J H (1965) The Algebraic Eigenvalue Problem Oxford University Press, Oxford

5 Parameters

1: Að2;Nþ 1Þ – REAL (KIND=nag_wp) array Input

On entry: if A is declared with bounds 2; 0 : Nð Þ, then Að1; iÞ and Að2; iÞ must contain the real
and imaginary parts of ai (i.e., the coefficient of zn�i), for i ¼ 0; 1; . . . ; n.

Constraint: Að1; 0Þ 6¼ 0:0 or Að2; 0Þ 6¼ 0:0.

2: N – INTEGER Input

On entry: n, the degree of the polynomial.

Constraint: N � 1.

3: SCAL – LOGICAL Input

On entry: indicates whether or not the polynomial is to be scaled. See Section 9 for advice on
when it may be preferable to set SCAL ¼ :FALSE: and for a description of the scaling strategy.

Suggested value: SCAL ¼ :TRUE:.

4: Zð2;NÞ – REAL (KIND=nag_wp) array Output

On exit: the real and imaginary parts of the roots are stored in Zð1; iÞ and Zð2; iÞ respectively, for
i ¼ 1; 2; . . . ; n.

5: Wð4� Nþ 1ð ÞÞ – REAL (KIND=nag_wp) array Workspace

6: IFAIL – INTEGER Input/Output

On entry: IFAIL must be set to 0, �1 or 1. If you are unfamiliar with this parameter you should
refer to Section 3.3 in the Essential Introduction for details.

For environments where it might be inappropriate to halt program execution when an error is
detected, the value �1 or 1 is recommended. If the output of error messages is undesirable, then
the value 1 is recommended. Otherwise, if you are not familiar with this parameter, the
recommended value is 0. When the value �1 or 1 is used it is essential to test the value of
IFAIL on exit.

On exit: IFAIL ¼ 0 unless the routine detects an error or a warning has been flagged (see
Section 6).
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6 Error Indicators and Warnings

If on entry IFAIL ¼ 0 or �1, explanatory error messages are output on the current error message unit (as
defined by X04AAF).

Errors or warnings detected by the routine:

IFAIL ¼ 1

On entry, Að1; 0Þ ¼ 0:0 and Að2; 0Þ ¼ 0:0,
or N < 1.

IFAIL ¼ 2

The iterative procedure has failed to converge. This error is very unlikely to occur. If it does,
please contact NAG, as some basic assumption for the arithmetic has been violated. See also
Section 9.

IFAIL ¼ 3

Either overflow or underflow prevents the evaluation of P zð Þ near some of its zeros. This error is
very unlikely to occur. If it does, please contact NAG. See also Section 9.

IFAIL ¼ �99

An unexpected error has been triggered by this routine. Please contact NAG.

See Section 3.8 in the Essential Introduction for further information.

IFAIL ¼ �399

Your licence key may have expired or may not have been installed correctly.

See Section 3.7 in the Essential Introduction for further information.

IFAIL ¼ �999

Dynamic memory allocation failed.

See Section 3.6 in the Essential Introduction for further information.

7 Accuracy

All roots are evaluated as accurately as possible, but because of the inherent nature of the problem
complete accuracy cannot be guaranteed. See also Section 10.

8 Parallelism and Performance

Not applicable.

9 Further Comments

If SCAL ¼ :TRUE:, then a scaling factor for the coefficients is chosen as a power of the base b of the
machine so that the largest coefficient in magnitude approaches thresh ¼ bemax�p. You should note that
no scaling is performed if the largest coefficient in magnitude exceeds thresh, even if SCAL ¼ :TRUE:.
(b, emax and p are defined in Chapter X02.)

However, with SCAL ¼ :TRUE:, overflow may be encountered when the input coefficients
a0; a1; a2; . . . ; an vary widely in magnitude, particularly on those machines for which b 4pð Þ overflows.
In such cases, SCAL should be set to .FALSE. and the coefficients scaled so that the largest coefficient
in magnitude does not exceed b emax�2pð Þ.

Even so, the scaling strategy used by C02AFF is sometimes insufficient to avoid overflow and/or
underflow conditions. In such cases, you are recommended to scale the independent variable zð Þ so that
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the disparity between the largest and smallest coefficient in magnitude is reduced. That is, use the routine
to locate the zeros of the polynomial dP czð Þ for some suitable values of c and d. For example, if the
original polynomial was P zð Þ ¼ 2�100iþ 2100z20, then choosing c ¼ 2�10 and d ¼ 2100, for instance,
would yield the scaled polynomial iþ z20, which is well-behaved relative to overflow and underflow and
has zeros which are 210 times those of P zð Þ.
If the routine fails with IFAIL ¼ 2 or 3, then the real and imaginary parts of any roots obtained before
the failure occurred are stored in Z in the reverse order in which they were found. Let nR denote the
number of roots found before the failure occurred. Then Zð1; nÞ and Zð2; nÞ contain the real and
imaginary parts of the first root found, Zð1; n� 1Þ and Zð2; n� 1Þ contain the real and imaginary parts
of the second root found, . . . ;Zð1; n� nR þ 1Þ and Zð2; n� nR þ 1Þ contain the real and imaginary
parts of the nRth root found. After the failure has occurred, the remaining 2� n� nRð Þ elements of Z

contain a large negative number (equal to �1= X02AMFðÞ �
ffiffiffi
2
p� �

).

10 Example

For this routine two examples are presented. There is a single example program for C02AFF, with a
main program and the code to solve the two example problems given in the subroutines EX1 and EX2.

Example 1 (EX1)

This example finds the roots of the polynomial

a0z
5 þ a1z

4 þ a2z
3 þ a3z

2 þ a4zþ a5 ¼ 0;

w h e r e a0 ¼ 5:0þ 6:0ið Þ, a1 ¼ 30:0þ 20:0ið Þ, a2 ¼ � 0:2þ 6:0ið Þ, a3 ¼ 50:0þ 100000:0ið Þ,
a4 ¼ � 2:0� 40:0ið Þ and a5 ¼ 10:0þ 1:0ið Þ.
Example 2 (EX2)

This example solves the same problem as subroutine EX1, but in addition attempts to estimate the
accuracy of the computed roots using a perturbation analysis. Further details can be found in Thompson
(1991).

10.1 Program Text

! C02AFF Example Program Text
! Mark 25 Release. NAG Copyright 2014.

Module c02affe_mod

! C02AFF Example Program Module:
! Parameters

! .. Implicit None Statement ..
Implicit None

! .. Accessibility Statements ..
Private

! .. Parameters ..
Integer, Parameter, Public :: nin = 5, nout = 6
Logical, Parameter, Public :: scal = .True.

End Module c02affe_mod
Program c02affe

! C02AFF Example Main Program

! .. Use Statements ..
Use c02affe_mod, Only: nout

! .. Implicit None Statement ..
Implicit None

! .. Executable Statements ..
Write (nout,*) ’C02AFF Example Program Results’

Call ex1

Call ex2
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Contains
Subroutine ex1

! .. Use Statements ..
Use nag_library, Only: c02aff, nag_wp
Use c02affe_mod, Only: nin, scal

! .. Local Scalars ..
Integer :: i, ifail, n

! .. Local Arrays ..
Real (Kind=nag_wp), Allocatable :: a(:,:), w(:), z(:,:)

! .. Executable Statements ..
Write (nout,*)
Write (nout,*)
Write (nout,*) ’Example 1’

! Skip heading in data file
Read (nin,*)
Read (nin,*)
Read (nin,*)

Read (nin,*) n
Allocate (a(2,0:n),w(4*(n+1)),z(2,n))

Read (nin,*)(a(1,i),a(2,i),i=0,n)

ifail = 0
Call c02aff(a,n,scal,z,w,ifail)

Write (nout,*)
Write (nout,99999) ’Degree of polynomial = ’, n
Write (nout,*)
Write (nout,*) ’Computed roots of polynomial’
Write (nout,*)

Do i = 1, n
Write (nout,99998) ’z = ’, z(1,i), z(2,i), ’*i’

End Do

99999 Format (1X,A,I4)
99998 Format (1X,A,1P,E12.4,Sp,E12.4,A)

End Subroutine ex1
Subroutine ex2

! .. Use Statements ..
Use nag_library, Only: a02abf, c02aff, nag_wp, x02ajf, x02alf
Use c02affe_mod, Only: nin, scal

! .. Local Scalars ..
Real (Kind=nag_wp) :: deltac, deltai, di, eps, epsbar, &

f, r1, r2, r3, rmax
Integer :: i, ifail, j, jmin, n

! .. Local Arrays ..
Real (Kind=nag_wp), Allocatable :: a(:,:), abar(:,:), r(:), w(:), &

z(:,:), zbar(:,:)
Integer, Allocatable :: m(:)

! .. Intrinsic Procedures ..
Intrinsic :: abs, max, min

! .. Executable Statements ..
Write (nout,*)
Write (nout,*)
Write (nout,*) ’Example 2’

! Skip heading in data file
Read (nin,*)
Read (nin,*)

Read (nin,*) n
Allocate (a(2,0:n),abar(2,0:n),r(n),w(4*(n+1)),z(2,n),zbar(2,n),m(n))

! Read in the coefficients of the original polynomial.
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Read (nin,*)(a(1,i),a(2,i),i=0,n)

! Compute the roots of the original polynomial.

ifail = 0
Call c02aff(a,n,scal,z,w,ifail)

! Form the coefficients of the perturbed polynomial.

eps = x02ajf()
epsbar = 3.0E0_nag_wp*eps

Do i = 0, n

If (a(1,i)/=0.0E0_nag_wp) Then
f = 1.0E0_nag_wp + epsbar
epsbar = -epsbar
abar(1,i) = f*a(1,i)

If (a(2,i)/=0.0E0_nag_wp) Then
abar(2,i) = f*a(2,i)

Else
abar(2,i) = 0.0E0_nag_wp

End If

Else
abar(1,i) = 0.0E0_nag_wp

If (a(2,i)/=0.0E0_nag_wp) Then
f = 1.0E0_nag_wp + epsbar
epsbar = -epsbar
abar(2,i) = f*a(2,i)

Else
abar(2,i) = 0.0E0_nag_wp

End If
End If

End Do

! Compute the roots of the perturbed polynomial.

ifail = 0
Call c02aff(abar,n,scal,zbar,w,ifail)

! Perform error analysis.

! Initialize markers to 0 (unmarked).

m(1:n) = 0

rmax = x02alf()

! Loop over all unperturbed roots (stored in Z).

Do i = 1, n
deltai = rmax
r1 = a02abf(z(1,i),z(2,i))

! Loop over all perturbed roots (stored in ZBAR).

Do j = 1, n

! Compare the current unperturbed root to all unmarked
! perturbed roots.

If (m(j)==0) Then
r2 = a02abf(zbar(1,j),zbar(2,j))
deltac = abs(r1-r2)

If (deltac<deltai) Then
deltai = deltac
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jmin = j
End If

End If

End Do

! Mark the selected perturbed root.

m(jmin) = 1

! Compute the relative error.

If (r1/=0.0E0_nag_wp) Then
r3 = a02abf(zbar(1,jmin),zbar(2,jmin))
di = min(r1,r3)
r(i) = max(deltai/max(di,deltai/rmax),eps)

Else
r(i) = 0.0E0_nag_wp

End If

End Do

Write (nout,*)
Write (nout,99999) ’Degree of polynomial = ’, n
Write (nout,*)
Write (nout,*) ’Computed roots of polynomial ’, ’ Error estimates’
Write (nout,*) ’ ’, &

’ (machine-dependent)’
Write (nout,*)

Do i = 1, n
Write (nout,99998) ’z = ’, z(1,i), z(2,i), ’*i’, r(i)

End Do

99999 Format (1X,A,I4)
99998 Format (1X,A,1P,E12.4,Sp,E12.4,A,5X,Ss,E9.1)

End Subroutine ex2
End Program c02affe

10.2 Program Data

C02AFF Example Program Data

Example 1
5

5.0 6.0
30.0 20.0
-0.2 -6.0
50.0 100000.0
-2.0 40.0
10.0 1.0

Example 2
5

5.0 6.0
30.0 20.0
-0.2 -6.0
50.0 100000.0
-2.0 40.0
10.0 1.0

10.3 Program Results

C02AFF Example Program Results

Example 1

Degree of polynomial = 5
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Computed roots of polynomial

z = -2.4328E+01 -4.8555E+00*i
z = 5.2487E+00 +2.2736E+01*i
z = 1.4653E+01 -1.6569E+01*i
z = -6.9264E-03 -7.4434E-03*i
z = 6.5264E-03 +7.4232E-03*i

Example 2

Degree of polynomial = 5

Computed roots of polynomial Error estimates
(machine-dependent)

z = -2.4328E+01 -4.8555E+00*i 1.1E-16
z = 5.2487E+00 +2.2736E+01*i 3.0E-16
z = 1.4653E+01 -1.6569E+01*i 3.2E-16
z = -6.9264E-03 -7.4434E-03*i 1.7E-16
z = 6.5264E-03 +7.4232E-03*i 1.1E-16
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