NAG Library Routine Document
 C05RCF

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms and other implementation-dependent details.

1 Purpose

C05RCF is a comprehensive routine that finds a solution of a system of nonlinear equations by a modification of the Powell hybrid method. You must provide the Jacobian.

2 Specification

```
SUBROUTINE CO5RCF (FCN, N, X, FVEC, FJAC, XTOL, MAXFEV, MODE, DIAG,
        FACTOR, NPRINT, NFEV, NJEV, R, QTF, IUSER, RUSER,
        IFAIL)
INTEGER N, MAXFEV, MODE, NPRINT, NFEV, NJEV, IUSER(*), IFAIL
REAL (KIND=nag_wp) X(N), FVEC(N), FJAC(N,N), XTOL, DIAG(N), FACTOR,
    R(N* (N+1)/2), QTF (N), RUSER(*)
EXTERNAL FCN
```

```
EXTERNAL FCN
```


3 Description

The system of equations is defined as:

$$
f_{i}\left(x_{1}, x_{2}, \ldots, x_{n}\right)=0, \quad i=1,2, \ldots, n .
$$

C05RCF is based on the MINPACK routine HYBRJ (see Moré et al. (1980)). It chooses the correction at each step as a convex combination of the Newton and scaled gradient directions. The Jacobian is updated by the rank-1 method of Broyden. At the starting point, the Jacobian is requested, but it is not asked for again until the rank-1 method fails to produce satisfactory progress. For more details see Powell (1970).

4 References

Moré J J, Garbow B S and Hillstrom K E (1980) User guide for MINPACK-1 Technical Report ANL-8074 Argonne National Laboratory

Powell M J D (1970) A hybrid method for nonlinear algebraic equations Numerical Methods for Nonlinear Algebraic Equations (ed P Rabinowitz) Gordon and Breach

5 Parameters

1: \quad FCN - SUBROUTINE, supplied by the user.
Depending upon the value of IFLAG, FCN must either return the values of the functions f_{i} at a point x or return the Jacobian at x.

```
The specification of FCN is:
SUBROUTINE FCN (N, X, FVEC, FJAC, IUSER, RUSER, IFLAG)
INTEGER N, IUSER(*), IFLAG
REAL (KIND=nag_wp) X(N), FVEC(N), FJAC(N,N), RUSER(*)
1: N - INTEGER Input
    On entry: n, the number of equations.
```

2: $\quad \mathrm{X}(\mathrm{N})-$ REAL (KIND=$=$ nag_wp $)$ array
On entry: the components of the point x at which the functions or the Jacobian must be evaluated.

FVEC(N) - REAL (KIND=nag_wp) array
Input/Output
On entry: if IFLAG $=0$ or 2 , FVEC contains the function values $f_{i}(x)$ and must not be changed.

On exit: if IFLAG $=1$ on entry, FVEC must contain the function values $f_{i}(x)$ (unless IFLAG is set to a negative value by FCN).

FJAC(N, N) - REAL (KIND=nag_wp) array
Input/Output
On entry: if IFLAG $=0, \operatorname{FJAC}(i, j)$ contains the value of $\frac{\partial f_{i}}{\partial x_{j}}$ at the point x, for $i=1,2, \ldots, n$ and $j=1,2, \ldots, n$. When IFLAG $=0$ or 1 , FJAC must not be changed. On exit: if IFLAG $=2$ on entry, $\operatorname{FJAC}(i, j)$ must contain the value of $\frac{\partial f_{i}}{\partial x_{j}}$ at the point x, for $i=1,2, \ldots, n$ and $j=1,2, \ldots, n$, (unless IFLAG is set to a negative value by FCN).

IUSER $(*)$ - INTEGER array User Workspace
$\operatorname{RUSER}(*)$ - REAL (KIND=nag_wp) array User Workspace
FCN is called with the parameters IUSER and RUSER as supplied to C05RCF. You are free to use the arrays IUSER and RUSER to supply information to FCN as an alternative to using COMMON global variables.

IFLAG - INTEGER
Input/Output
On entry: $\operatorname{IFLAG}=0,1$ or 2 .
$\mathrm{IFLAG}=0$
X, FVEC and FJAC are available for printing (see NPRINT).
IFLAG $=1$
FVEC is to be updated.
IFLAG $=2$
FJAC is to be updated.
On exit: in general, IFLAG should not be reset by FCN. If, however, you wish to terminate execution (perhaps because some illegal point X has been reached), then IFLAG should be set to a negative integer value.

FCN must either be a module subprogram USEd by, or declared as EXTERNAL in, the (sub)program from which C05RCF is called. Parameters denoted as Input must not be changed by this procedure.

N - INTEGER
Input
On entry: n, the number of equations.
Constraint: $\mathrm{N}>0$.

3: $\quad \mathrm{X}(\mathrm{N})-\mathrm{REAL}(\mathrm{KIND}=$ nag_wp $)$ array
Input/Output
On entry: an initial guess at the solution vector.
On exit: the final estimate of the solution vector.

4: $\quad \operatorname{FVEC}(\mathrm{N})-\mathrm{REAL}(\mathrm{KIND}=$ nag_wp $)$ array
Output
On exit: the function values at the final point returned in X .

5: $\quad \operatorname{FJAC}(\mathrm{N}, \mathrm{N})$ - REAL (KIND=nag_wp) array
Output
On exit: the orthogonal matrix Q produced by the $Q R$ factorization of the final approximate Jacobian.

6: \quad XTOL - REAL (KIND=nag_wp)
Input
On entry: the accuracy in X to which the solution is required.
Suggested value: $\sqrt{\epsilon}$, where ϵ is the machine precision returned by X02AJF.
Constraint: XTOL ≥ 0.0.
7: MAXFEV - INTEGER
Input
On entry: the maximum number of calls to FCN with IFLAG $\neq 0$. C05RCF will exit with IFAIL $=2$, if, at the end of an iteration, the number of calls to FCN exceeds MAXFEV.
Suggested value: MAXFEV $=100 \times(\mathrm{N}+1)$.
Constraint: MAXFEV >0.

8: MODE - INTEGER
Input
On entry: indicates whether or not you have provided scaling factors in DIAG.
If MODE $=2$ the scaling must have been specified in DIAG.
Otherwise, if $\mathrm{MODE}=1$, the variables will be scaled internally.
Constraint: $\mathrm{MODE}=1$ or 2 .

9: $\quad \operatorname{DIAG}(\mathrm{N})-\mathrm{REAL}(\mathrm{KIND}=$ nag_wp) array
Input/Output
On entry: if MODE $=2$, DIAG must contain multiplicative scale factors for the variables.
If MODE $=1$, DIAG need not be set.
Constraint: if $\mathrm{MODE}=2, \operatorname{DIAG}(i)>0.0$, for $i=1,2, \ldots, n$.
On exit: the scale factors actually used (computed internally if $\mathrm{MODE}=1$).
10: FACTOR - REAL (KIND=nag_wp)
Input
On entry: a quantity to be used in determining the initial step bound. In most cases, FACTOR should lie between 0.1 and 100.0. (The step bound is FACTOR $\times \|$ DIAG $\times \mathrm{X} \|_{2}$ if this is nonzero; otherwise the bound is FACTOR.)
Suggested value: FACTOR $=100.0$.
Constraint: FACTOR >0.0.
11: NPRINT - INTEGER
Input
On entry: indicates whether (and how often) special calls to FCN, with IFLAG set to 0, are to be made for printing purposes.

NPRINT ≤ 0
No calls are made.
NPRINT > 0
FCN is called at the beginning of the first iteration, every NPRINT iterations thereafter and immediately before the return from C05RCF.

12: NFEV - INTEGER
On exit: the number of calls made to FCN to evaluate the functions.
13: NJEV - INTEGER
On exit: the number of calls made to FCN to evaluate the Jacobian.
14: $\quad \mathrm{R}(\mathrm{N} \times(\mathrm{N}+1) / 2)-\mathrm{REAL}(\mathrm{KIND}=$ nag_wp $)$ array
Output
On exit: the upper triangular matrix R produced by the $Q R$ factorization of the final approximate Jacobian, stored row-wise.

15: $\quad \mathrm{QTF}(\mathrm{N})-\operatorname{REAL}(\mathrm{KIND}=$ nag_wp) array
Output
On exit: the vector $Q^{\mathrm{T}} f$.
16: IUSER $(*)$ - INTEGER array User Workspace
17: $\operatorname{RUSER}(*)$ - REAL (KIND=nag_wp) array User Workspace
IUSER and RUSER are not used by C05RCF, but are passed directly to FCN and may be used to pass information to this routine as an alternative to using COMMON global variables.

18: IFAIL - INTEGER
Input/Output
On entry: IFAIL must be set to $0,-1$ or 1 . If you are unfamiliar with this parameter you should refer to Section 3.3 in the Essential Introduction for details.

For environments where it might be inappropriate to halt program execution when an error is detected, the value -1 or 1 is recommended. If the output of error messages is undesirable, then the value 1 is recommended. Otherwise, if you are not familiar with this parameter, the recommended value is 0 . When the value -1 or 1 is used it is essential to test the value of IFAIL on exit.

On exit: IFAIL $=0$ unless the routine detects an error or a warning has been flagged (see Section 6).

6 Error Indicators and Warnings

If on entry IFAIL $=0$ or -1 , explanatory error messages are output on the current error message unit (as defined by X04AAF).

Errors or warnings detected by the routine:
IFAIL $=2$
There have been at least MAXFEV calls to FCN: MAXFEV $=\langle$ value \rangle. Consider restarting the calculation from the final point held in X .

IFAIL $=3$
No further improvement in the solution is possible. XTOL is too small: XTOL $=\langle$ value \rangle.
IFAIL $=4$
The iteration is not making good progress, as measured by the improvement from the last $\langle v a l u e\rangle$ Jacobian evaluations. This failure exit may indicate that the system does not have a zero, or that the solution is very close to the origin (see Section 7). Otherwise, rerunning C05RCF from a different starting point may avoid the region of difficulty.

IFAIL $=5$
The iteration is not making good progress, as measured by the improvement from the last $\langle v a l u e\rangle$ iterations. This failure exit may indicate that the system does not have a zero, or that the solution is very close to the origin (see Section 7). Otherwise, rerunning C05RCF from a different starting point may avoid the region of difficulty.

IFAIL $=6$
IFLAG was set negative in FCN. IFLAG $=\langle v a l u e\rangle$.
IFAIL $=11$
On entry, $\mathrm{N}=\langle$ value \rangle.
Constraint: $\mathrm{N}>0$.
IFAIL $=12$
On entry, $\mathrm{XTOL}=\langle$ value \rangle.
Constraint: XTOL ≥ 0.0.
IFAIL $=13$
On entry, MODE $=\langle$ value \rangle.
Constraint: $\mathrm{MODE}=1$ or 2 .

IFAIL $=14$
On entry, FACTOR $=\langle$ value \rangle.
Constraint: FACTOR >0.0.

IFAIL $=15$
On entry, $\mathrm{MODE}=2$ and DIAG contained a non-positive element.
IFAIL $=18$
On entry, MAXFEV $=\langle$ value \rangle.
Constraint: MAXFEV >0.
IFAIL $=-99$
An unexpected error has been triggered by this routine. Please contact NAG.
See Section 3.8 in the Essential Introduction for further information.
IFAIL $=-399$
Your licence key may have expired or may not have been installed correctly.
See Section 3.7 in the Essential Introduction for further information.
IFAIL $=-999$
Dynamic memory allocation failed.
See Section 3.6 in the Essential Introduction for further information.

7 Accuracy

If \hat{x} is the true solution and D denotes the diagonal matrix whose entries are defined by the array DIAG, then C05RCF tries to ensure that

$$
\|D(x-\hat{x})\|_{2} \leq \mathrm{XTOL} \times\|D \hat{x}\|_{2} .
$$

If this condition is satisfied with XTOL $=10^{-k}$, then the larger components of $D x$ have k significant
decimal digits. There is a danger that the smaller components of $D x$ may have large relative errors, but the fast rate of convergence of C05RCF usually obviates this possibility.

If XTOL is less than machine precision and the above test is satisfied with the machine precision in place of XTOL, then the routine exits with IFAIL $=3$.
Note: this convergence test is based purely on relative error, and may not indicate convergence if the solution is very close to the origin.

The convergence test assumes that the functions and the Jacobian are coded consistently and that the functions are reasonably well behaved. If these conditions are not satisfied, then C05RCF may incorrectly indicate convergence. The coding of the Jacobian can be checked using C05ZDF. If the Jacobian is coded correctly, then the validity of the answer can be checked by rerunning C05RCF with a lower value for XTOL.

8 Parallelism and Performance

C05RCF is threaded by NAG for parallel execution in multithreaded implementations of the NAG Library.
C05RCF makes calls to BLAS and/or LAPACK routines, which may be threaded within the vendor library used by this implementation. Consult the documentation for the vendor library for further information.

Please consult the X06 Chapter Introduction for information on how to control and interrogate the OpenMP environment used within this routine. Please also consult the Users' Note for your implementation for any additional implementation-specific information.

9 Further Comments

Local workspace arrays of fixed lengths are allocated internally by C05RCF. The total size of these arrays amounts to $4 \times n$ real elements.

The time required by C 05 RCF to solve a given problem depends on n, the behaviour of the functions, the accuracy requested and the starting point. The number of arithmetic operations executed by C05RCF is approximately $11.5 \times n^{2}$ to process each evaluation of the functions and approximately $1.3 \times n^{3}$ to process each evaluation of the Jacobian. The timing of C05RCF is strongly influenced by the time spent evaluating the functions.

Ideally the problem should be scaled so that, at the solution, the function values are of comparable magnitude.

10 Example

This example determines the values x_{1}, \ldots, x_{9} which satisfy the tridiagonal equations:

$$
\begin{aligned}
\left(3-2 x_{1}\right) x_{1}-2 x_{2} & =-1, \\
-x_{i-1}+\left(3-2 x_{i}\right) x_{i}-2 x_{i+1} & =-1, \quad i=2,3, \ldots, 8 \\
-x_{8}+\left(3-2 x_{0}\right) x_{0} & =-1
\end{aligned}
$$

10.1 Program Text

```
C05RCF Example Program Text
Mark 25 Release. NAG Copyright 2014.
Module cO5rcfe_mod
    C05RCF Example Program Module:
                Parameters and User-defined Routines
    .. Use Statements ..
    Use nag_library, Only: nag_wp
    .. Implicit None Statement ..
    Implicit None
```

! .. Accessibility Statements ..
Private
Public :: fcn
Parameters ..
Real (Kind=nag_wp), Parameter, Public : : factor = 100.0_nag_wp
Integer, Parameter, Public : maxfev = 1000, mode = 2 , $\mathrm{n}=9, \quad \&$ nout $=6$, nprint $=0$
Contains
Subroutine fcn(n, x,fvec,fjac,iuser,ruser,iflag)

Set iflag negative to terminate execution for any reason.
iflag = 0
Return
End Subroutine fcn
End Module cO5rcfe_mod
Program c05rcfe
CO5RCF Example Main Program
.. Use Statements ..
Use nag_library, Only: c05rcf, dnrm2, nag_wp, x02ajf
Use co5rcfe_mod, Only: factor, fcn, maxfev, mode, n, nout, nprint
.. Implicit None Statement ..
Implicit None
! .. Local Scalars ..
Real (Kind=nag_wp) :: fnorm, xtol
Integer : : i, ifail, nfev, njev
! .. Local Arrays .
Real (Kind=nag wp), Allocatable : diag(:), fjac(:, :), fvec(:),
qtf(:), r(:), $x(:)$
Real (Kind=nag_wp)
: : ruser (1)
Integer : : iuser (1)
. Intrinsic Procedures . .
Intrinsic :: sqrt
.. Executable Statements ..
Write (nout,*) 'CO5RCF Example Program Results'

```
    Allocate (diag(n),fjac(n,n),fvec(n),qtf(n),r(n*(n+1)/2),x(n))
! The following starting values provide a rough solution.
    x(1:n) = -1.0_nag_wp
    xtol = sqrt(x02ajf())
    diag(1:n) = 1.0_nag_wp
    ifail = -1
    Call c05rcf(fcn,n,x,fvec,fjac,xtol,maxfev,mode,diag,factor,nprint,nfev, &
        njev,r,qtf,iuser,ruser,ifail)
    If (ifail==0 .Or. ifail==2 .Or. ifail==3 .Or. ifail==4 .Or. ifail==5) &
        Then
        If (ifail==O) Then
! The NAG name equivalent of dnrm2 is f06ejf
                fnorm = dnrm2(n,fvec,1)
                Write (nout,*)
                Write (nout,99999) 'Final 2-norm of the residuals =', fnorm
                Write (nout,*)
                Write (nout,*) 'Final approximate solution'
    Else
                Write (nout,*)
                Write (nout,*) 'Approximate solution:'
    End If
    Write (nout,*)
    Write (nout,99998)(x(i),i=1,n)
End If
99999 Format (1X,A,E12.4)
99998 Format (1X,3F12.4)
    End Program c05rcfe
```


10.2 Program Data

None.

10.3 Program Results

C05RCF Example Program Results
Final 2-norm of the residuals $=0.1193 \mathrm{E}-07$
Final approximate solution

-0.5707	-0.6816	-0.7017
-0.7042	-0.7014	-0.6919
-0.6658	-0.5960	-0.4164

