NAG Library Routine Document
 D03PDF/D03PDA

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms and other implementation-dependent details.

1 Purpose

D03PDF/D03PDA integrates a system of linear or nonlinear parabolic partial differential equations (PDEs) in one space variable. The spatial discretization is performed using a Chebyshev C^{0} collocation method, and the method of lines is employed to reduce the PDEs to a system of ordinary differential equations (ODEs). The resulting system is solved using a backward differentiation formula method.
D03PDA is a version of D03PDF that has additional parameters in order to make it safe for use in multithreaded applications (see Section 5).

2 Specification

2.1 Specification for D03PDF

```
SUBROUTINE DO3PDF (NPDE, M, TS, TOUT, PDEDEF, BNDARY, U, NBKPTS, XBKPTS, &
    NPOLY, NPTS, X, UINIT, ACC, RSAVE, LRSAVE, ISAVE, &
    LISAVE, ITASK, ITRACE, IND, IFAIL)
INTEGER NPDE, M, NBKPTS, NPOLY, NPTS, LRSAVE, ISAVE(LISAVE), LISAVE, ITASK, ITRACE, IND, IFAIL
REAL (KIND=nag_wp) TS, TOUT, U(NPDE,NPTS), XBKPTS (NBKPTS), X(NPTS), \&
```

```
EXTERNAL PDEDEF, BNDARY, UINIT
```

```
EXTERNAL PDEDEF, BNDARY, UINIT
```


2.2 Specification for D03PDA

```
SUBROUTINE DO3PDA (NPDE, M, TS, TOUT, PDEDEF, BNDARY, U, NBKPTS, XBKPTS, &
        NPOLY, NPTS, X, UINIT, ACC, RSAVE, LRSAVE, ISAVE, &
        LISAVE, ITASK, ITRACE, IND, IUSER, RUSER, CWSAV, &
        LWSAV, IWSAV, RWSAV, IFAIL)
INTEGER NPDE, M, NBKPTS, NPOLY, NPTS, LRSAVE, ISAVE(LISAVE), &
        LISAVE, ITASK, ITRACE, IND, IUSER(*), IWSAV(505), &
        IFAIL
REAL (KIND=nag_wp) TS, TOUT, U(NPDE,NPTS), XBKPTS(NBKPTS), X(NPTS), &
LOGICAL LWSAV(100)
CHARACTER(80) CWSAV (10)
EXTERNAL PDEDEF, BNDARY, UINIT
```


3 Description

D03PDF/D03PDA integrates the system of parabolic equations:

$$
\begin{equation*}
\sum_{j=1}^{\mathrm{NPDE}} P_{i, j} \frac{\partial U_{j}}{\partial t}+Q_{i}=x^{-m} \frac{\partial}{\partial x}\left(x^{m} R_{i}\right), \quad i=1,2, \ldots, \text { NPDE }, \quad a \leq x \leq b, t \geq t_{0} \tag{1}
\end{equation*}
$$

where $P_{i, j}, Q_{i}$ and R_{i} depend on x, t, U, U_{x} and the vector U is the set of solution values

$$
\begin{equation*}
U(x, t)=\left[U_{1}(x, t), \ldots, U_{\mathrm{NPDE}}(x, t)\right]^{\mathrm{T}} \tag{2}
\end{equation*}
$$

and the vector U_{x} is its partial derivative with respect to x. Note that $P_{i, j}, Q_{i}$ and R_{i} must not depend on $\frac{\partial U}{\partial t}$.

The integration in time is from t_{0} to $t_{\text {out }}$, over the space interval $a \leq x \leq b$, where $a=x_{1}$ and $b=x_{\text {NBKPTS }}$ are the leftmost and rightmost of a user-defined set of break-points $x_{1}, x_{2}, \ldots, x_{\text {NBKPTS }}$. The coordinate system in space is defined by the value of $m ; m=0$ for Cartesian coordinates, $m=1$ for cylindrical polar coordinates and $m=2$ for spherical polar coordinates.
The system is defined by the functions $P_{i, j}, Q_{i}$ and R_{i} which must be specified in PDEDEF.
The initial values of the functions $U(x, t)$ must be given at $t=t_{0}$, and must be specified in UINIT.
The functions R_{i}, for $i=1,2, \ldots$, NPDE, which may be thought of as fluxes, are also used in the definition of the boundary conditions for each equation. The boundary conditions must have the form

$$
\begin{equation*}
\beta_{i}(x, t) R_{i}\left(x, t, U, U_{x}\right)=\gamma_{i}\left(x, t, U, U_{x}\right), \quad i=1,2, \ldots, \mathrm{NPDE}, \tag{3}
\end{equation*}
$$

where $x=a$ or $x=b$.
The boundary conditions must be specified in BNDARY. Thus, the problem is subject to the following restrictions:
(i) $t_{0}<t_{\text {out }}$, so that integration is in the forward direction;
(ii) $P_{i, j}, Q_{i}$ and the flux R_{i} must not depend on any time derivatives;
(iii) the evaluation of the functions $P_{i, j}, Q_{i}$ and R_{i} is done at both the break-points and internally selected points for each element in turn, that is $P_{i, j}, Q_{i}$ and R_{i} are evaluated twice at each breakpoint. Any discontinuities in these functions must therefore be at one or more of the break-points $x_{1}, x_{2}, \ldots, x_{\text {NBKPTS }} ;$
(iv) at least one of the functions $P_{i, j}$ must be nonzero so that there is a time derivative present in the problem;
(v) if $m>0$ and $x_{1}=0.0$, which is the left boundary point, then it must be ensured that the PDE solution is bounded at this point. This can be done by either specifying the solution at $x=0.0$ or by specifying a zero flux there, that is $\beta_{i}=1.0$ and $\gamma_{i}=0.0$. See also Section 9.
The parabolic equations are approximated by a system of ODEs in time for the values of U_{i} at the mesh points. This ODE system is obtained by approximating the PDE solution between each pair of breakpoints by a Chebyshev polynomial of degree NPOLY. The interval between each pair of break-points is treated by D03PDF/D03PDA as an element, and on this element, a polynomial and its space and time derivatives are made to satisfy the system of PDEs at NPOLY - 1 spatial points, which are chosen internally by the code and the break-points. In the case of just one element, the break-points are the boundaries. The user-defined break-points and the internally selected points together define the mesh. The smallest value that NPOLY can take is one, in which case, the solution is approximated by piecewise linear polynomials between consecutive break-points and the method is similar to an ordinary finite element method.

In total there are $($ NBKPTS -1$) \times$ NPOLY +1 mesh points in the spatial direction, and NPDE $\times(($ NBKPTS -1$) \times$ NPOLY +1$)$ ODEs in the time direction; one ODE at each break-point for each PDE component and (NPOLY - 1) ODEs for each PDE component between each pair of breakpoints. The system is then integrated forwards in time using a backward differentiation formula method.

4 References

Berzins M (1990) Developments in the NAG Library software for parabolic equations Scientific Software Systems (eds J C Mason and M G Cox) 59-72 Chapman and Hall
Berzins M and Dew P M (1991) Algorithm 690: Chebyshev polynomial software for elliptic-parabolic systems of PDEs ACM Trans. Math. Software 17 178-206

Zaturska N B, Drazin P G and Banks W H H (1988) On the flow of a viscous fluid driven along a channel by a suction at porous walls Fluid Dynamics Research 4

5 Parameters

1: NPDE - INTEGER
On entry: the number of PDEs in the system to be solved.
Constraint: $\mathrm{NPDE} \geq 1$.

2: M - INTEGER
On entry: the coordinate system used:
$\mathrm{M}=0$
Indicates Cartesian coordinates.
$\mathrm{M}=1$
Indicates cylindrical polar coordinates.
$M=2$
Indicates spherical polar coordinates.
Constraint: $\mathrm{M}=0,1$ or 2 .
3: \quad TS - REAL (KIND=nag_wp)
On entry: the initial value of the independent variable t.
On exit: the value of t corresponding to the solution values in U . Normally TS $=$ TOUT.
Constraint: TS $<$ TOUT.

4: \quad TOUT - REAL (KIND=nag_wp)
On entry: the final value of t to which the integration is to be carried out.
5: PDEDEF - SUBROUTINE, supplied by the user.
External Procedure
PDEDEF must compute the values of the functions $P_{i, j}, Q_{i}$ and R_{i} which define the system of PDEs. The functions may depend on x, t, U and U_{x} and must be evaluated at a set of points.

```
The specification of PDEDEF for D03PDF is:
SUBROUTINE PDEDEF (NPDE, T, X, NPTL, U, UX, P, Q, R, IRES)
INTEGER NPDE, NPTL, IRES
```



```
    R(NPDE,NPTL)
The specification of PDEDEF for D03PDA is:
```

```
SUBROUTINE PDEDEF (NPDE, T, X, NPTL, U, UX, P, 2, R, IRES, IUSER, &
```

SUBROUTINE PDEDEF (NPDE, T, X, NPTL, U, UX, P, 2, R, IRES, IUSER, \&
SUBROUTINE PDEDEF ($$
\begin{array}{c}{(NPDE, T, X, NPTL, U, UX, P, Q, R, IRES, IUSER, &}\\{\mathrm{ RUSER)}}\end{array}
$$)={
SUBROUTINE PDEDEF ($$
\begin{array}{c}{(NPDE, T, X, NPTL, U, UX, P, Q, R, IRES, IUSER, &}\\{\mathrm{ RUSER)}}\end{array}
$$)={
INTEGER NPDE, NPTL, IRES, IUSER(*)
INTEGER NPDE, NPTL, IRES, IUSER(*)
REAL (KIND=nag_wp) T, X(NPTL), U(NPDE,NPTL), UX(NPDE,NPTL), \&
REAL (KIND=nag_wp) T, X(NPTL), U(NPDE,NPTL), UX(NPDE,NPTL), \&
P(NPDE,NPDE,NPTL), Q(NPDE,NPTL), \&
P(NPDE,NPDE,NPTL), Q(NPDE,NPTL), \&
R(NPDE,NPTL), RUSER(*)
R(NPDE,NPTL), RUSER(*)
1: NPDE - INTEGER Input
1: NPDE - INTEGER Input
On entry: the number of PDEs in the system.
On entry: the number of PDEs in the system.
2: T - REAL (KIND=nag_wp)
2: T - REAL (KIND=nag_wp)
Input
Input
On entry: the current value of the independent variable t.
On entry: the current value of the independent variable t.

On entry: contains a set of mesh points at which $P_{i, j}, Q_{i}$ and R_{i} are to be evaluated. $\mathrm{X}(1)$ and $\mathrm{X}(\mathrm{NPTL})$ contain successive user-supplied break-points and the elements of the array will satisfy $\mathrm{X}(1)<\mathrm{X}(2)<\cdots<\mathrm{X}($ NPTL $)$.

4: NPTL - INTEGER
Input
On entry: the number of points at which evaluations are required (the value of NPOLY +1).

5: $\quad \mathrm{U}(\mathrm{NPDE}, \mathrm{NPTL})-\mathrm{REAL}(\mathrm{KIND}=$ nag_wp) array Input

On entry: $\mathrm{U}(i, j)$ contains the value of the component $U_{i}(x, t)$ where $x=\mathrm{X}(j)$, for $i=1,2, \ldots$, NPDE and $j=1,2, \ldots$, NPTL.

6: UX(NPDE, NPTL) - REAL (KIND=nag_wp) array
Input
On entry: $\mathrm{UX}(i, j)$ contains the value of the component $\frac{\partial U_{i}(x, t)}{\partial x}$ where $x=\mathrm{X}(j)$, for $i=1,2, \ldots$, NPDE and $j=1,2, \ldots$, NPTL.

Output
On exit: $\mathrm{P}(i, j, k)$ must be set to the value of $P_{i, j}\left(x, t, U, U_{x}\right)$ where $x=\mathrm{X}(k)$, for $i=1,2, \ldots$, NPDE, $j=1,2, \ldots$, NPDE and $k=1,2, \ldots$, NPTL.

8: $\quad \mathrm{Q}(\mathrm{NPDE}, \mathrm{NPTL})-\mathrm{REAL}(\mathrm{KIND}=$ nag_wp) array
Output
On exit: $\mathrm{Q}(i, j)$ must be set to the value of $Q_{i}\left(x, t, U, U_{x}\right)$ where $x=\mathrm{X}(j)$, for $i=1,2, \ldots$, NPDE and $j=1,2, \ldots$, NPTL.

9: $\quad \mathrm{R}($ NPDE, NPTL $)-\mathrm{REAL}(\mathrm{KIND}=$ nag_wp $)$ array
Output
On exit: $\mathrm{R}(i, j)$ must be set to the value of $R_{i}\left(x, t, U, U_{x}\right)$ where $x=\mathrm{X}(j)$, for $i=1,2, \ldots$, NPDE and $j=1,2, \ldots$, NPTL.

10: IRES - INTEGER
On entry: set to -1 or 1 .
On exit: should usually remain unchanged. However, you may set IRES to force the integration routine to take certain actions as described below:

IRES $=2$
Indicates to the integrator that control should be passed back immediately to the calling (sub)routine with the error indicator set to IFAIL $=6$.

IRES $=3$
Indicates to the integrator that the current time step should be abandoned and a smaller time step used instead. You may wish to set IRES $=3$ when a physically meaningless input or output value has been generated. If you consecutively set $\operatorname{IRES}=3$, then D03PDF/D03PDA returns to the calling subroutine with the error indicator set to $\mathrm{IFAIL}=4$.

Note: the following are additional parameters for specific use with D03PDA. Users of D03PDF therefore need not read the remainder of this description.

11:	$\operatorname{IUSER}(*)-\operatorname{INTEGER}$ array	User Workspace
12:	$\operatorname{RUSER}(*)-\operatorname{REAL}(\operatorname{KIND}=$ nag wp) array	User Workspace

PDEDEF is called with the parameters IUSER and RUSER as supplied to D03PDF/ D03PDA. You are free to use the arrays IUSER and RUSER to supply information to PDEDEF as an alternative to using COMMON global variables.

PDEDEF must either be a module subprogram USEd by, or declared as EXTERNAL in, the (sub)program from which D03PDF/D03PDA is called. Parameters denoted as Input must not be changed by this procedure.

6: BNDARY - SUBROUTINE, supplied by the user.
External Procedure
BNDARY must compute the functions β_{i} and γ_{i} which define the boundary conditions as in equation (3).

```
The specification of BNDARY for D03PDF is:
SUBROUTINE BNDARY (NPDE, T, U, UX, IBND, BETA, GAMMA, IRES)
INTEGER NPDE, IBND, IRES
REAL (KIND=nag_wp) T, U(NPDE), UX(NPDE), BETA(NPDE), &
GAMMA(NPDE)
The specification of BNDARY for D03PDA is:
SUBROUTINE BNDARY (NPDE, T, U, UX, IBND, BETA, GAMMA, IRES, &
    IUSER, RUSER)
INTEGER NPDE, IBND, IRES, IUSER(*)
REAL (KIND=nag_wp) T, U(NPDE), UX(NPDE), BETA(NPDE), &
GAMMA(NPDE), RUSER(*)
1: NPDE - INTEGER Input
    On entry: the number of PDEs in the system.
2: T - REAL (KIND=nag_wp) Input
    On entry: the current value of the independent variable t.
3: U(NPDE) - REAL (KIND=nag_wp) array Input
    On entry: }\textrm{U}(i)\mathrm{ contains the value of the component }\mp@subsup{U}{i}{}(x,t)\mathrm{ at the boundary specified by
    IBND, for }i=1,2,\ldots,NPDE
4: UX(NPDE) - REAL (KIND=nag_wp) array Input
    On entry: UX (i) contains the value of the component }\frac{\partial\mp@subsup{U}{i}{}(x,t)}{\partialx}\mathrm{ at the boundary specified
    by IBND, for }i=1,2,\ldots,NPDE
5: IBND - INTEGER Input
    On entry: specifies which boundary conditions are to be evaluated.
    IBND = 0
    BNDARY must set up the coefficients of the left-hand boundary, x=a.
        IBND }\not=
            BNDARY must set up the coefficients of the right-hand boundary, x = b
6: BETA(NPDE) - REAL (KIND=nag_wp) array
                                    Output
    On exit: BETA (i) must be set to the value of }\mp@subsup{\beta}{i}{}(x,t)\mathrm{ at the boundary specified by IBND,
    for }i=1,2,\ldots,NPDE
7: GAMMA(NPDE) - REAL (KIND=nag_wp) array
                    Output
    On exit: GAMMA (i) must be set to the value of }\mp@subsup{\gamma}{i}{}(x,t,U,\mp@subsup{U}{x}{})\mathrm{ at the boundary specified
    by IBND, for }i=1,2,\ldots,NPDE
```

On entry: set to -1 or 1 .
On exit: should usually remain unchanged. However, you may set IRES to force the integration routine to take certain actions as described below:
IRES $=2$
Indicates to the integrator that control should be passed back immediately to the calling (sub)routine with the error indicator set to $\operatorname{IFAIL}=6$.

IRES $=3$
Indicates to the integrator that the current time step should be abandoned and a smaller time step used instead. You may wish to set IRES $=3$ when a physically meaningless input or output value has been generated. If you consecutively set $\operatorname{IRES}=3$, then D03PDF/D03PDA returns to the calling subroutine with the error indicator set to $\mathrm{IFAIL}=4$.

Note: the following are additional parameters for specific use with D03PDA. Users of D03PDF therefore need not read the remainder of this description.

9:	$\operatorname{IUSER}(*)$ - INTEGER array	User Workspace
10:	$\operatorname{RUSER}(*)$ - REAL (KIND=nag_wp) array	User Workspace

BNDARY is called with the parameters IUSER and RUSER as supplied to D03PDF/ D03PDA. You are free to use the arrays IUSER and RUSER to supply information to BNDARY as an alternative to using COMMON global variables.

BNDARY must either be a module subprogram USEd by, or declared as EXTERNAL in, the (sub)program from which D03PDF/D03PDA is called. Parameters denoted as Input must not be changed by this procedure.

7: U(NPDE, NPTS) - REAL (KIND=nag_wp) array
Input/Output
On entry: if $\mathrm{IND}=1$ the value of U must be unchanged from the previous call.
On exit: $\mathrm{U}(i, j)$ will contain the computed solution at $t=\mathrm{TS}$.
8: NBKPTS - INTEGER
Input
On entry: the number of break-points in the interval $[a, b]$.
Constraint: NBKPTS ≥ 2.
9: \quad XBKPTS(NBKPTS) - REAL (KIND=nag_wp) array
Input
On entry: the values of the break-points in the space direction. XBKPTS(1) must specify the lefthand boundary, a, and XBKPTS(NBKPTS) must specify the right-hand boundary, b.
Constraint: XBKPTS(1) < XBKPTS $(2)<\cdots<$ XBKPTS(NBKPTS).
10: NPOLY - INTEGER
Input
On entry: the degree of the Chebyshev polynomial to be used in approximating the PDE solution between each pair of break-points.
Constraint: $1 \leq$ NPOLY ≤ 49.
11: NPTS - INTEGER
Input
On entry: the number of mesh points in the interval $[a, b]$.
Constraint: NPTS $=($ NBKPTS -1$) \times$ NPOLY +1.

On exit: the mesh points chosen by D03PDF/D03PDA in the spatial direction. The values of X will satisfy $\mathrm{X}(1)<\mathrm{X}(2)<\cdots<\mathrm{X}($ NPTS $)$.

13: UINIT - SUBROUTINE, supplied by the user.
External Procedure
UINIT must compute the initial values of the PDE components $U_{i}\left(x_{j}, t_{0}\right)$, for $i=1,2, \ldots$, NPDE and $j=1,2, \ldots$, NPTS.

```
The specification of UINIT for D03PDF is:
SUBROUTINE UINIT (NPDE, NPTS, X, U)
INTEGER NPDE, NPTS
REAL (KIND=nag_wp) X(NPTS), U(NPDE,NPTS)
The specification of UINIT for D03PDA is:
SUBROUTINE UINIT (NPDE, NPTS, X, U, IUSER, RUSER)
INTEGER NPDE, NPTS, IUSER(*)
REAL (KIND=nag_wp) X(NPTS), U(NPDE,NPTS), RUSER(*)
    NPDE - INTEGER
    Input
    On entry: the number of PDEs in the system.
2: NPTS - INTEGER Input
    On entry: the number of mesh points in the interval [a,b].
3: X(NPTS) - REAL (KIND=nag_wp) array
    Input
    On entry: X (j), contains the values of the jth mesh point, for j=1,2,\ldots,NPTS.
4: U(NPDE,NPTS) - REAL (KIND=nag_wp) array Output
    On exit: }\textrm{U}(i,j)\mathrm{ must be set to the initial value }\mp@subsup{U}{i}{}(\mp@subsup{x}{j}{},\mp@subsup{t}{0}{})\mathrm{ , for }i=1,2,\ldots,NPDE and
    j=1,2,\ldots,NPTS.
```

Note: the following are additional parameters for specific use with D03PDA. Users of D03PDF therefore need not read the remainder of this description.

```
5: IUSER(*) - INTEGER array User Workspace
6: RUSER (*) - REAL (KIND=nag_wp) array User Workspace
```

UINIT is called with the parameters IUSER and RUSER as supplied to D03PDF/ D03PDA. You are free to use the arrays IUSER and RUSER to supply information to UINIT as an alternative to using COMMON global variables.

UINIT must either be a module subprogram USEd by, or declared as EXTERNAL in, the (sub)program from which D03PDF/D03PDA is called. Parameters denoted as Input must not be changed by this procedure.

14: \quad ACC - REAL (KIND=nag_wp)
Input
On entry: a positive quantity for controlling the local error estimate in the time integration. If $E(i, j)$ is the estimated error for U_{i} at the j th mesh point, the error test is:

$$
|E(i, j)|=\mathrm{ACC} \times(1.0+|\mathrm{U}(i, j)|)
$$

Constraint: ACC >0.0.
15: RSAVE(LRSAVE) - REAL (KIND=nag_wp) array
Communication Array
If $\operatorname{IND}=0$, RSAVE need not be set on entry.

If IND $=1$, RSAVE must be unchanged from the previous call to the routine because it contains required information about the iteration.

LRSAVE - INTEGER
Input
On entry: the dimension of the array RSAVE as declared in the (sub)program from which D03PDF/D03PDA is called.

Constraint: LRSAVE $\geq 11 \times$ NPDE \times NPTS $+50+$ nwkres + lenode.
17: ISAVE(LISAVE) - INTEGER array
Communication Array
If IND $=0$, ISAVE need not be set on entry.
If IND $=1$, ISAVE must be unchanged from the previous call to the routine because it contains required information about the iteration. In particular:

ISAVE(1)
Contains the number of steps taken in time.
ISAVE(2)
Contains the number of residual evaluations of the resulting ODE system used. One such evaluation involves computing the PDE functions at all the mesh points, as well as one evaluation of the functions in the boundary conditions.
ISAVE(3)
Contains the number of Jacobian evaluations performed by the time integrator.
ISAVE(4)
Contains the order of the last backward differentiation formula method used.
ISAVE(5)
Contains the number of Newton iterations performed by the time integrator. Each iteration involves an ODE residual evaluation followed by a back-substitution using the $L U$ decomposition of the Jacobian matrix.

LISAVE - INTEGER Input
On entry: the dimension of the array ISAVE as declared in the (sub)program from which D03PDF/ D03PDA is called.

Constraint: LISAVE \geq NPDE \times NPTS +24 .
19: ITASK - INTEGER
Input
On entry: specifies the task to be performed by the ODE integrator.
ITASK $=1$
Normal computation of output values U at $t=$ TOUT.
ITASK $=2$
One step and return.
ITASK $=3$
Stop at first internal integration point at or beyond $t=$ TOUT.
Constraint: $\operatorname{ITASK}=1,2$ or 3 .

20: ITRACE - INTEGER
Input
On entry: the level of trace information required from D03PDF/D03PDA and the underlying ODE solver. ITRACE may take the value $-1,0,1,2$ or 3 .

ITRACE $=-1$
No output is generated.

$\operatorname{ITRACE}=0$

Only warning messages from the PDE solver are printed on the current error message unit (see X04AAF).
ITRACE >0
Output from the underlying ODE solver is printed on the current advisory message unit (see X04ABF). This output contains details of Jacobian entries, the nonlinear iteration and the time integration during the computation of the ODE system.

If ITRACE <-1, then -1 is assumed and similarly if ITRACE >3, then 3 is assumed.
The advisory messages are given in greater detail as ITRACE increases. You are advised to set ITRACE $=0$, unless you are experienced with sub-chapter D $02 \mathrm{M}-\mathrm{N}$.

21: IND - INTEGER
Input/Output
On entry: indicates whether this is a continuation call or a new integration.
$\mathrm{IND}=0$
Starts or restarts the integration in time.
$\mathrm{IND}=1$
Continues the integration after an earlier exit from the routine. In this case, only the parameters TOUT and IFAIL should be reset between calls to D03PDF/D03PDA.
Constraint: IND $=0$ or 1 .
On exit: $\mathrm{IND}=1$.
22: IFAIL - INTEGER
Input/Output
Note: for D03PDA, IFAIL does not occur in this position in the parameter list. See the additional parameters described below.

On entry: IFAIL must be set to $0,-1$ or 1 . If you are unfamiliar with this parameter you should refer to Section 3.3 in the Essential Introduction for details.

For environments where it might be inappropriate to halt program execution when an error is detected, the value -1 or 1 is recommended. If the output of error messages is undesirable, then the value 1 is recommended. Otherwise, if you are not familiar with this parameter, the recommended value is 0 . When the value -1 or 1 is used it is essential to test the value of IFAIL on exit.

On exit: IFAIL $=0$ unless the routine detects an error or a warning has been flagged (see Section 6).
Note: the following are additional parameters for specific use with D03PDA. Users of D03PDF therefore need not read the remainder of this description.

23: IUSER $(*)$ - INTEGER array User Workspace
IUSER is not used by D03PDF/D03PDA, but is passed directly to PDEDEF, BNDARY and UINIT and may be used to pass information to these routines as an alternative to using COMMON global variables.

RUSER $(*)-$ REAL (KIND=nag_wp) array	User Workspace
CWSAV $(10)-$ CHARACTER(80) array	Communication Array
LWSAV $(100)-$ LOGICAL array	Communication Array
$\operatorname{IWSAV}(505)-$ INTEGER array	Communication Array
$\operatorname{RWSAV}(1100)-$ REAL $\left(\mathrm{KIND=}{ }^{\text {nag_wp }) \text { array }}\right.$	Communication Array

Note: see the parameter description for IFAIL above.

6 Error Indicators and Warnings

If on entry IFAIL $=0$ or -1 , explanatory error messages are output on the current error message unit (as defined by X04AAF).

Errors or warnings detected by the routine:
IFAIL $=1$
On entry, TOUT $\leq \mathrm{TS}$,
or TOUT - TS is too small,
or \quad ITASK $\neq 1,2$ or 3 ,
or $\quad \mathrm{M} \neq 0,1$ or 2 ,
or $\quad \mathrm{M}>0$ and $\operatorname{XBKPTS}(1)<0.0$,
or $\quad \mathrm{NPDE}<1$,
or \quad NBKPTS <2,
or \quad NPOLY <1 or NPOLY >49,
or \quad NPTS $\neq($ NBKPTS -1$) \times$ NPOLY +1 ,
or $\quad \mathrm{ACC} \leq 0.0$,
or $\quad \mathrm{IND} \neq 0$ or 1 ,
or break-points XBKPTS (i) are not ordered,
or LRSAVE is too small,
or LISAVE is too small.
IFAIL $=2$
The underlying ODE solver cannot make any further progress across the integration range from the current point $t=\mathrm{TS}$ with the supplied value of ACC. The components of U contain the computed values at the current point $t=\mathrm{TS}$.

IFAIL $=3$
In the underlying ODE solver, there were repeated errors or corrector convergence test failures on an attempted step, before completing the requested task. The problem may have a singularity or ACC is too small for the integration to continue. Integration was successful as far as $t=$ TS.

IFAIL $=4$
In setting up the ODE system, the internal initialization routine was unable to initialize the derivative of the ODE system. This could be due to the fact that IRES was repeatedly set to 3 in at least PDEDEF or BNDARY, when the residual in the underlying ODE solver was being evaluated.

IFAIL $=5$
In solving the ODE system, a singular Jacobian has been encountered. You should check your problem formulation.

IFAIL $=6$
When evaluating the residual in solving the ODE system, IRES was set to 2 in at least PDEDEF or BNDARY. Integration was successful as far as $t=\mathrm{TS}$.

IFAIL $=7$
The value of ACC is so small that the routine is unable to start the integration in time.

IFAIL $=8$

In one of PDEDEF or BNDARY, IRES was set to an invalid value.
IFAIL $=9$ (D02NNF)
A serious error has occurred in an internal call to the specified routine. Check the problem specification and all parameters and array dimensions. Setting ITRACE $=1$ may provide more information. If the problem persists, contact NAG.

IFAIL $=10$
The required task has been completed, but it is estimated that a small change in ACC is unlikely to produce any change in the computed solution. (Only applies when you are not operating in one step mode, that is when ITASK $\neq 2$.)

IFAIL $=11$
An error occurred during Jacobian formulation of the ODE system (a more detailed error description may be directed to the current error message unit).

IFAIL $=12$
Not applicable.
IFAIL $=13$
Not applicable.
IFAIL $=14$
The flux function R_{i} was detected as depending on time derivatives, which is not permissible.

$$
\text { IFAIL }=-99
$$

An unexpected error has been triggered by this routine. Please contact NAG.
See Section 3.8 in the Essential Introduction for further information.
IFAIL $=-399$
Your licence key may have expired or may not have been installed correctly.
See Section 3.7 in the Essential Introduction for further information.
IFAIL $=-999$
Dynamic memory allocation failed.
See Section 3.6 in the Essential Introduction for further information.

7 Accuracy

D03PDF/D03PDA controls the accuracy of the integration in the time direction but not the accuracy of the approximation in space. The spatial accuracy depends on the degree of the polynomial approximation NPOLY, and on both the number of break-points and on their distribution in space. In the time integration only the local error over a single step is controlled and so the accuracy over a number of steps cannot be guaranteed. You should therefore test the effect of varying the accuracy parameter, ACC.

8 Parallelism and Performance

D03PDF/D03PDA is threaded by NAG for parallel execution in multithreaded implementations of the NAG Library.

D03PDF/D03PDA makes calls to BLAS and/or LAPACK routines, which may be threaded within the vendor library used by this implementation. Consult the documentation for the vendor library for further information.
Please consult the X06 Chapter Introduction for information on how to control and interrogate the OpenMP environment used within this routine. Please also consult the Users' Note for your implementation for any additional implementation-specific information.

9 Further Comments

D03PDF/D03PDA is designed to solve parabolic systems (possibly including elliptic equations) with second-order derivatives in space. The parameter specification allows you to include equations with only first-order derivatives in the space direction but there is no guarantee that the method of integration will be satisfactory for such systems. The position and nature of the boundary conditions in particular are critical in defining a stable problem.

The time taken depends on the complexity of the parabolic system and on the accuracy requested.

10 Example

The problem consists of a fourth-order PDE which can be written as a pair of second-order ellipticparabolic PDEs for $U_{1}(x, t)$ and $U_{2}(x, t)$,

$$
\begin{gather*}
0=\frac{\partial^{2} U_{1}}{\partial x^{2}}-U_{2} \tag{4}\\
\frac{\partial U_{2}}{\partial t}=\frac{\partial^{2} U_{2}}{\partial x^{2}}+U_{2} \frac{\partial U_{1}}{\partial x}-U_{1} \frac{\partial U_{2}}{\partial x} \tag{5}
\end{gather*}
$$

where $-1 \leq x \leq 1$ and $t \geq 0$. The boundary conditions are given by

$$
\begin{gathered}
\frac{\partial U_{1}}{\partial x}=0 \quad \text { and } \quad U_{1}=1 \quad \text { at } x=-1, \quad \text { and } \\
\frac{\partial U_{1}}{\partial x}=0 \quad \text { and } \quad U_{1}=-1 \quad \text { at } x=1
\end{gathered}
$$

The initial conditions at $t=0$ are given by

$$
U_{1}=-\sin \frac{\pi x}{2} \quad \text { and } \quad U_{2}=\frac{\pi^{2}}{4} \sin \frac{\pi x}{2}
$$

The absence of boundary conditions for $U_{2}(x, t)$ does not pose any difficulties provided that the derivative flux boundary conditions are assigned to the first PDE (4) which has the correct flux, $\frac{\partial U_{1}}{\partial x}$. The conditions on $U_{1}(x, t)$ at the boundaries are assigned to the second PDE by setting $\beta_{2}=0.0$ in equation (3) and placing the Dirichlet boundary conditions on $U_{1}(x, t)$ in the function γ_{2}.

10.1 Program Text

the following program illustrates the use of D03PDF. An equivalent program illustrating the use of D03PDA is available with the supplied Library and is also available from the NAG web site.

```
DO3PDF Example Program Text
Mark 25 Release. NAG Copyright 2014.
Module dO3pdfe_mod
    D03PDF Example Program Module:
        Parameters and User-defined Routines
    .. Use Statements ..
    Use nag_library, Only: nag_wp
```

Real (Kind=nag_wp), Intent (In) : t
Integer, Intent (Inout) : ires
Integer, Intent (In) : : npde, nptl
.. Array Arguments ..
Real (Kind=nag_wp), Intent (Out) : p(npde,npde,nptl),
q(npde,nptl), r(npde,nptl)
Real (Kind=nag_wp), Intent (In)
: : u(npde,nptl), ux(npde,nptl), \&
x (nptl)
.. Local Scalars ..
Integer : i
.. Executable Statements .
Do $i=1$, nptl
$q(1, i)=u(2, i)$
$q(2, i)=u(1, i) * u x(2, i)-u x(1, i) * u(2, i)$
$r(1, i)=u x(1, i)$
$r(2, i)=u x(2, i)$
p(1,1,i) = 0.0_nag_wp
$p(1,2, i)=0.0 _$nag_wp
$p(2,1, i)=0.0 _$nag_wp
$p(2,2, i)=1.0 _$nag_wp
End Do
Return
End Subroutine pdedef
Subroutine bndary(npde,t,u,ux,ibnd,beta, gamma,ires)
! .. Scalar Arguments ..
Real (Kind=nag_wp), Intent (In) : t
Integer, Intent (In) : : ibnd, npde
Integer, Intent (Inout) : ires
.. Array Arguments ..
Real (Kind=nag_wp), Intent (Out) : beta(npde), gamma(npde)
Real (Kind=nag_wp), Intent (In) : u(npde), ux(npde)
! .. Executable Statements ..
If (ibnd==0) Then
beta(1) = 1.0_nag_wp
gamma(1) = 0.0_nag_wp

```
        beta(2) = 0.0_nag_wp
        gamma(2) = u(1) - 1.0_nag_wp
    Else
        beta(1) = 1.0E+0_nag_wp
        gamma(1) = 0.0_nag_wp
        beta(2) = 0.0_nag_wp
        gamma(2) = u(1) + 1.0_nag_wp
    End If
    Return
    End Subroutine bndary
End Module dO3pdfe_mod
Program dO3pdfe
    DO3PDF Example Main Program
    .. Use Statements ..
    Use nag_library, Only: dO3pdf, dO3pyf, nag_wp
    Use dO3pdfe_mod, Only: bndary, nin, nout, npde, pdedef, uinit
    .. Implicit None Statement ..
    Implicit None
! .. Local Scalars ..
    Real (Kind=nag_wp) :: acc, dx, tout, ts
    Integer :: i, ifail, ind, intpts, it, &
        itask, itrace, itype, lenode, &
        lisave, lrsave, m, mu, nbkpts, &
        nel, neqn, npll, npoly, npts, &
        nwkres
    Real (Kind=nag_wp), Allocatable
:: rsave(:), u(:,:), uout(:,:,:), &
    x(:), xbkpts(:), xout(:)
    Integer, Allocatable
:: isave(:)
    .. Intrinsic Procedures ..
    Intrinsic :: real
    Write (nout,*) 'D03PDF Example Program Results'
    Skip heading in data file
    Read (nin,*)
    Read (nin,*) intpts, nbkpts, npoly, itype
    nel = nbkpts - 1
    npts = nel*npoly + 1
    mu = npde*(npoly+1) - 1
    neqn = npde*npts
    lisave = neqn + 24
    npll = npoly + 1
    nwkres = 3*npll*npl1 + npll*(npde*npde+6*npde+nbkpts+1) + 13*npde + 5
    lenode = (3*mu+1)*neqn
    lrsave = 11*neqn + 50 + nwkres + lenode
    Allocate (u(npde,npts),uout(npde,intpts,itype),rsave(lrsave),x(npts), &
        xbkpts(nbkpts), xout(intpts),isave(lisave))
    Read (nin,*) xout(1:intpts)
    Read (nin,*) acc
    Read (nin,*) m, itrace
! Set the break-points
    dx = 2.0_nag_wp/real(nbkpts-1,kind=nag_wp)
    xbkpts(1) = -1.0_nag_wp
    Do i = 2, nbkpts - 1
        xbkpts(i) = xbkpts(i-1) + dx
    End Do
    xbkpts(nbkpts) = 1.0_nag_wp
    ind = 0
    itask = 1
    Read (nin,*) ts, tout
    Loop over output values of t
```

```
    Do it = 1, 5
        tout = 10.0_nag_wp*tout
        ifail: behaviour on error exit
            =0 for hard exit, =1 for quiet-soft, =-1 for noisy-soft
        ifail = 0
        Call d03pdf(npde,m,ts,tout,pdedef,bndary,u,nbkpts,xbkpts,npoly,npts,x, &
        uinit,acc,rsave,lrsave,isave,lisave,itask,itrace,ind,ifail)
        If (it==1) Then
            Write (nout,99999) npoly, nel
        Write (nout,99998) acc, npts
        Write (nout,99997) xout(1:6)
    End If
    Interpolate at required spatial points
    ifail = 0
    Call d03pyf(npde,u,nbkpts,xbkpts,npoly,npts,xout,intpts,itype,uout, &
        rsave,lrsave,ifail)
    Write (nout,99996) ts, uout(1,1:intpts,1)
    Write (nout,99995) uout(2,1:intpts,1)
End Do
! Print integration statistics
Write (nout,99994) isave(1), isave(2), isave(3), isave(5)
99999 Format (' Polynomial degree =',I4,' No. of elements = ',I4)
99998 Format ('Accuracy requirement =',E10.3,' Number of points = ',I5/)
```



```
99996 Format (1X,F7.4,' U(1)',6F8.4)
99995 Format (9X,'U(2)',6F8.4/)
99994 Format (' Number of integration steps in time , &
    I4/', Number of residual evaluations of resulting ODE system', &
    I4/' Number of Jacobian evaluations ', &
    I4/' Number of iterations of nonlinear solver ',I4)
End Program d03pdfe
```


10.2 Program Data

```
D03PDF Example Program Data
    610 3 1 : intpts, nbkpts, npoly, itype
    -1.0 -0.6 -0.2 0.2 0.6 1.0 : xout
    1.OE-4 : acc
    0 0 : m, itrace
    0.0 0.1E-4 : ts, tout
```


10.3 Program Results

D03PDF Example Program Results
Polynomial degree $=3$ No. of elements $=9$ Accuracy requirement $=0.100 \mathrm{E}-03$ Number of points $=28$

T /	X	-1.0000	-0.6000	-0.2000	0.2000	0.6000	1.0000
0.0001	U (1)	1.0000	0.8090	0.3090	-0.3090	-0.8090	-1.0000
	U (2)	-2.4850	-1.9957	-0.7623	0.7623	1.9957	2.4850
0.0010	U (1)	1.0000	0.8085	0.3088	-0.3088	-0.8085	-1.0000
	U (2)	-2.5583	-1.9913	-0.7606	0.7606	1.9913	2.5583
0.0100	U (1)	1.0000	0.8051	0.3068	-0.3068	-0.8051	-1.0000
	U (2)	-2.6962	-1.9481	-0.7439	0.7439	1.9481	2.6962
0.1000	U (1)	1.0000	0.7951	0.2985	-0.2985	-0.7951	-1.0000
	U (2)	-2.9022	-1.8339	-0.6338	0.6338	1.8339	2.9022

$1.0000 U(1)$	1.0000	0.7939	0.2972	-0.2972	-0.7939	-1.0000
$U(2)$	-2.9233	-1.8247	-0.6120	0.6120	1.8247	2.9233

Number of integration steps in time 50
Number of residual evaluations of resulting ODE system 407
Number of Jacobian evaluations 18
$\begin{array}{lr}\text { Number of iterations of nonlinear solver } & 122\end{array}$

Example Program
Solution, $U(1, x, t)$, of Elliptic-parabolic Pair using Chebyshev Collocation and BDF

Solution, $U(2, x, t)$, of Elliptic-parabolic Pair using Chebyshev Collocation and BDF

