NAG Library Routine Document
 E01DAF

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms and other implementation-dependent details.

1 Purpose

E01DAF computes a bicubic spline interpolating surface through a set of data values, given on a rectangular grid in the $x-y$ plane.

2 Specification

```
SUBROUTINE EO1DAF (MX, MY, X, Y, F, PX, PY, LAMDA, MU, C, WRK, IFAIL)
INTEGER MX, MY, PX, PY, IFAIL
REAL (KIND=nag_wp) X(MX), Y(MY), F(MX*MY), LAMDA(MX+4), MU(MY+4), &
    C(MX*MY), WRK((MX+6)*(MY+6))
```


3 Description

E01DAF determines a bicubic spline interpolant to the set of data points $\left(x_{q}, y_{r}, f_{q, r}\right)$, for $q=1,2, \ldots, m_{x}$ and $r=1,2, \ldots, m_{y}$. The spline is given in the B-spline representation

$$
s(x, y)=\sum_{i=1}^{m_{x}} \sum_{j=1}^{m_{y}} c_{i j} M_{i}(x) N_{j}(y)
$$

such that

$$
s\left(x_{q}, y_{r}\right)=f_{q, r}
$$

where $M_{i}(x)$ and $N_{j}(y)$ denote normalized cubic B-splines, the former defined on the knots λ_{i} to λ_{i+4} and the latter on the knots μ_{j} to μ_{j+4}, and the $c_{i j}$ are the spline coefficients. These knots, as well as the coefficients, are determined by the routine, which is derived from the routine B2IRE in Anthony et al. (1982). The method used is described in Section 9.2.

For further information on splines, see Hayes and Halliday (1974) for bicubic splines and de Boor (1972) for normalized B-splines.

Values and derivatives of the computed spline can subsequently be computed by calling E02DEF, E02DFF or E02DHF as described in Section 9.3.

4 References

Anthony G T, Cox M G and Hayes J G (1982) DASL - Data Approximation Subroutine Library National Physical Laboratory

Cox M G (1975) An algorithm for spline interpolation J. Inst. Math. Appl. 15 95-108
de Boor C (1972) On calculating with B-splines J. Approx. Theory 6 50-62
Hayes J G and Halliday J (1974) The least squares fitting of cubic spline surfaces to general data sets J. Inst. Math. Appl. 14 89-103

5 Parameters

1: MX - INTEGER
Input
2: MY - INTEGER Input
On entry: MX and MY must specify m_{x} and m_{y} respectively, the number of points along the x and y axis that define the rectangular grid.

Constraint: $\mathrm{MX} \geq 4$ and $\mathrm{MY} \geq 4$.
$\mathrm{X}(\mathrm{MX})$ - REAL (KIND=nag_wp) array Input
Y(MY) - REAL (KIND=nag_wp) array Input
On entry: $\mathrm{X}(q)$ and $\mathrm{Y}(r)$ must contain x_{q}, for $q=1,2, \ldots, m_{x}$, and y_{r}, for $r=1,2, \ldots, m_{y}$, respectively.

Constraints:

$$
\begin{aligned}
& \mathrm{X}(q)<\mathrm{X}(q+1), \text { for } q=1,2, \ldots, m_{x}-1 \\
& \mathrm{Y}(r)<\mathrm{Y}(r+1), \text { for } r=1,2, \ldots, m_{y}-1
\end{aligned}
$$

5: $\quad \mathrm{F}(\mathrm{MX} \times \mathrm{MY})-$ REAL (KIND=$=$ nag_wp $)$ array
Input
On entry: $\mathrm{F}\left(m_{y} \times(q-1)+r\right)$ must contain $f_{q, r}$, for $q=1,2, \ldots, m_{x}$ and $r=1,2, \ldots, m_{y}$.
6: PX - INTEGER Output
7: PY - INTEGER Output
On exit: PX and PY contain $m_{x}+4$ and $m_{y}+4$, the total number of knots of the computed spline with respect to the x and y variables, respectively.

```
LAMDA(MX + 4) - REAL (KIND=nag_wp) array
Output
MU(MY + 4) - REAL (KIND=nag_wp) array Output
```

On exit: LAMDA contains the complete set of knots λ_{i} associated with the x variable, i.e., the interior knots LAMDA(5), LAMDA(6), .., LAMDA(PX -4), as well as the additional knots

$$
\operatorname{LAMDA}(1)=\operatorname{LAMDA}(2)=\operatorname{LAMDA}(3)=\operatorname{LAMDA}(4)=X(1)
$$

and

$$
\operatorname{LAMDA}(\mathrm{PX}-3)=\operatorname{LAMDA}(\mathrm{PX}-2)=\operatorname{LAMDA}(\mathrm{PX}-1)=\operatorname{LAMDA}(\mathrm{PX})=\mathrm{X}(\mathrm{MX})
$$

needed for the B -spline representation.
$\mathrm{C}(\mathrm{MX} \times \mathrm{MY})-$ REAL (KIND=nag_wp) array
Output
On exit: the coefficients of the spline interpolant. $\mathrm{C}\left(m_{y} \times(i-1)+j\right)$ contains the coefficient $c_{i j}$ described in Section 3.
$\operatorname{WRK}((M X+6) \times(M Y+6))-$ REAL $\left(K I N D=n a g _w p\right)$ array
Workspace
IFAIL - INTEGER
Input/Output
On entry: IFAIL must be set to $0,-1$ or 1 . If you are unfamiliar with this parameter you should refer to Section 3.3 in the Essential Introduction for details.

For environments where it might be inappropriate to halt program execution when an error is detected, the value -1 or 1 is recommended. If the output of error messages is undesirable, then the value 1 is recommended. Otherwise, if you are not familiar with this parameter, the recommended value is 0 . When the value -1 or 1 is used it is essential to test the value of IFAIL on exit.

On exit: IFAIL $=0$ unless the routine detects an error or a warning has been flagged (see Section 6).

6 Error Indicators and Warnings

If on entry IFAIL $=0$ or -1 , explanatory error messages are output on the current error message unit (as defined by X04AAF).

Errors or warnings detected by the routine:
IFAIL $=1$
On entry, MX <4,
or $\quad \mathrm{MY}<4$.
IFAIL $=2$
On entry, either the values in the X array or the values in the Y array are not in increasing order if not already there.

IFAIL $=3$
A system of linear equations defining the B-spline coefficients was singular; the problem is too illconditioned to permit solution.

IFAIL $=-99$
An unexpected error has been triggered by this routine. Please contact NAG.
See Section 3.8 in the Essential Introduction for further information.
IFAIL $=-399$
Your licence key may have expired or may not have been installed correctly.
See Section 3.7 in the Essential Introduction for further information.
IFAIL $=-999$
Dynamic memory allocation failed.
See Section 3.6 in the Essential Introduction for further information.

7 Accuracy

The main sources of rounding errors are in steps 2, 3, 6 and 7 of the algorithm described in Section 9.2. It can be shown (see Cox (1975)) that the matrix A_{x} formed in step 2 has elements differing relatively from their true values by at most a small multiple of 3ϵ, where ϵ is the machine precision. A_{x} is 'totally positive', and a linear system with such a coefficient matrix can be solved quite safely by elimination without pivoting. Similar comments apply to steps 6 and 7 . Thus the complete process is numerically stable.

8 Parallelism and Performance

E01DAF is not threaded by NAG in any implementation.
E01DAF makes calls to BLAS and/or LAPACK routines, which may be threaded within the vendor library used by this implementation. Consult the documentation for the vendor library for further information.
Please consult the X06 Chapter Introduction for information on how to control and interrogate the OpenMP environment used within this routine. Please also consult the Users' Note for your implementation for any additional implementation-specific information.

9 Further Comments

9.1 Timing

The time taken by E01DAF is approximately proportional to $m_{x} m_{y}$.

9.2 Outline of Method Used

The process of computing the spline consists of the following steps:

1. choice of the interior x-knots $\lambda_{5}, \lambda_{6}, \ldots, \lambda_{m_{x}}$ as $\lambda_{i}=x_{i-2}$, for $i=5,6, \ldots, m_{x}$,
2. formation of the system

$$
A_{x} E=F
$$

where A_{x} is a band matrix of order m_{x} and bandwidth 4 , containing in its q th row the values at x_{q} of the B -splines in $x, \mathrm{~F}$ is the m_{x} by m_{y} rectangular matrix of values $f_{q, r}$, and E denotes an m_{x} by m_{y} rectangular matrix of intermediate coefficients,
3. use of Gaussian elimination to reduce this system to band triangular form,
4. solution of this triangular system for E,
5. choice of the interior y knots $\mu_{5}, \mu_{6}, \ldots, \mu_{m_{y}}$ as $\mu_{i}=y_{i-2}$, for $i=5,6, \ldots, m_{y}$,
6. formation of the system

$$
A_{y} C^{\mathrm{T}}=E^{\mathrm{T}}
$$

where A_{y} is the counterpart of A_{x} for the y variable, and C denotes the m_{x} by m_{y} rectangular matrix of values of $c_{i j}$,
7. use of Gaussian elimination to reduce this system to band triangular form,
8. solution of this triangular system for C^{T} and hence C.

For computational convenience, steps 2 and 3, and likewise steps 6 and 7, are combined so that the formation of A_{x} and A_{y} and the reductions to triangular form are carried out one row at a time.

9.3 Evaluation of Computed Spline

The values of the computed spline at the points $\left(x_{k}, y_{k}\right)$, for $k=1,2, \ldots, m$, may be obtained in the real array FF (see E02DEF), of length at least m, by the following call:

```
IFAIL = 0
CALL EO2DEF(M,PX,PY,X,Y,LAMDA,MU,C,FF,WRK,IWRK,IFAIL)
```

where $\mathrm{M}=m$ and the coordinates x_{k}, y_{k} are stored in $\mathrm{X}(k), \mathrm{Y}(k)$. PX and PY, LAMDA, MU and c have the same values as PX and PY LAMDA, MU and C output from E01DAF. WRK is a real workspace array of length at least PY, and IWRK is an integer workspace array of length at least PY - 4. (See E02DEF.)
To evaluate the computed spline on an m_{x} by m_{y} rectangular grid of points in the $x-y$ plane, which is defined by the x coordinates stored in $\mathrm{X}(j)$, for $j=1,2, \ldots, m_{x}$, and the y coordinates stored in $\mathrm{Y}(k)$, for $k=1,2, \ldots, m_{y}$, returning the results in the real array FF (see E02DFF) which is of length at least MX \times MY, the following call may be used:

```
IFAIL = 0
CALL E02DFF(MX,MY,PX,PY,X,Y,LAMDA,MU,C,FG,WRK,LWRK,
* IWRK,LIWRK,IFAIL)
```

where MX $=m_{x}$, MY $=m_{y}$. PX and PY, LAMDA, MU and c have the same values as PX, PY, LAMDA, MU and C output from E01DAF. WRK is a real workspace array of length at least $\mathrm{LWRK}=\min (n w r k 1$, $n w r k 2)$, for $n w r k 1=\mathrm{MX} \times 4+\mathrm{PX}, n w r k 2=\mathrm{MY} \times 4+\mathrm{PY}$, and IWRK is an integer workspace array of length at least $\operatorname{LIWRK}=\mathrm{MY}+\mathrm{PY}-4$ if nwrk1 $>$ nwrk2, or $\mathrm{MX}+\mathrm{PX}-4$ otherwise.
The result of the spline evaluated at grid point (j, k) is returned in element $(\mathrm{MY} \times(j-1)+k)$ of the array FG.

10 Example

This example reads in values of m_{x}, x_{q}, for $q=1,2, \ldots, m_{x}, m_{y}$ and y_{r}, for $r=1,2, \ldots, m_{y}$, followed by values of the ordinates $f_{q, r}$ defined at the grid points $\left(x_{q}, y_{r}\right)$.
It then calls E01DAF to compute a bicubic spline interpolant of the data values, and prints the values of the knots and B-spline coefficients. Finally it evaluates the spline at a small sample of points on a rectangular grid.

10.1 Program Text

Program e01dafe
! EO1DAF Example Program Text
! Mark 25 Release. NAG Copyright 2014.
! .. Use Statements ..
Use nag_library, Only: e01daf, e02dff, nag_wp, x04cbf
.. Implicit None Statement ..
Implicit None
.. Parameters ..
Integer, Parameter : indent $=0, \mathrm{ncols}=80, \mathrm{nin}=5, \quad$ \&
Character (1), Parameter nout $=6$
: : chlabel $=$ 'C', diag $=' N^{\prime}$, matrix $=$ \&
'G'
Character (4), Parameter
: : form $=$ 'F8.3'
.. Local Scalars ..
Real (Kind=nag_wp) : : step, xhi, xlo, yhi, ylo
Integer : : i, ifail, j, liwrk, lwrk, mx, my, \&
nx, ny, px, py
Character (54) : : title
.. Local Arrays ..
Real (Kind=nag_wp), Allocatable :: c(:), f(:,:), fg(:), lamda(:), \& mu(:), tx(:), ty(:), wrk(:), x(:), \& y(:)
Integer, Allocatable : iwrk(:)
Character (10), Allocatable : clabs(:), rlabs(:)
.. Intrinsic Procedures ..
Intrinsic : : min, real
! .. Executable Statements ..
Write (nout,*) 'EO1DAF Example Program Results'
! Skip heading in data file
Read (nin,*)
Read the number of X points, $M X$, and the values of the X co-ordinates.

Read (nin,*) mx
Allocate ($x(m x), l a m d a(m x+4))$
Read (nin,*) x (1:mx)
Read the number of Y points, $M Y$, and the values of the Y co-ordinates.

Read (nin,*) my
Allocate $(y(m y), m u(m y+4), c(m x * m y), f(m y, m x), w r k((m x+6) *(m y+6)))$
Read (nin,*) y(1:my)
Read the function values at the grid points.
Do j $=1$, my
Read (nin,*) $f(j, 1: m x)$
End Do
! Generate the (X, Y, F) interpolating bicubic B-spline.

```
ifail = 0
Call e0ldaf(mx,my,x,y,f,px,py,lamda,mu,c,wrk,ifail)
Print the knot sets, LAMDA and MU.
Write (nout,*)
Write (nout,*) , I Knot LAMDA(I) J Knot MU(J)'
Write (nout,99997)(j,lamda(j),j,mu(j),j=4,min(px,py)-3)
If (px>py) Then
    Write (nout,99997)(j,lamda(j),j=py-2,px-3)
Else If (px<py) Then
    Write (nout,99996)(j,mu(j),j=px-2,py-3)
End If
Print the spline coefficients.
Write (nout,*)
Write (nout,*) 'The B-Spline coefficients:'
Write (nout,99999)(c(i),i=1,mx*my)
Write (nout,*)
Flush (nout)
Evaluate the spline on a regular rectangular grid at nx*ny points
over the domain [xlo,xhi] x [ylo,yhi].
Deallocate (wrk)
Read (nin,*) nx, xlo, xhi
Read (nin,*) ny, ylo, yhi
lwrk = min(4*nx+px,4*ny+py)
If (4*nx+px>4*ny+py) Then
    liwrk = ny + py - 4
Else
    liwrk = nx + px - 4
End If
Allocate (tx(nx),ty(ny),fg(nx*ny),wrk(lwrk),iwrk(liwrk))
Generate nx/ny equispaced x/y co-ordinates.
step = (xhi-xlo)/real(nx-1,kind=nag_wp)
tx(1) = xlo
Do i = 2, nx - 1
    tx(i) = tx(i-1) + step
End Do
tx(nx) = xhi
step = (yhi-ylo)/real(ny-1,kind=nag_wp)
ty(1) = ylo
Do i = 2, ny - 1
    ty(i) = ty(i-1) + step
End Do
ty(ny) = yhi
Evaluate the spline.
ifail = 0
Call e02dff(nx,ny,px,py,tx,ty,lamda,mu,c,fg,wrk,lwrk,iwrk,liwrk,ifail)
Generate row and column labels and title for printing results.
Allocate (clabs(nx),rlabs(ny))
Do i = 1, nx
    Write (clabs(i),99998) tx(i)
End Do
Do i = 1, ny
    Write (rlabs(i),99998) ty(i)
    Flush (nout)
End Do
title = 'Spline evaluated on a regular mesh (X across, Y down):'
```

```
! Print the results.
    ifail = 0
    Call x04cbf(matrix,diag,ny,nx,fg,ny,form,title,chlabel,rlabs,chlabel, &
        clabs,ncols,indent,ifail)
99999 Format (1X,8F9.4)
99998 Format (F5.2)
99997 Format (1X,I16,F12.4,I11,F12.4)
99996 Format (1X,I39,F12.4)
    End Program eOldafe
```


10.2 Program Data

10.3 Program Results

