NAG Library Routine Document
 E01SAF

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms and other implementation-dependent details.

1 Purpose

E01SAF generates a two-dimensional surface interpolating a set of scattered data points, using the method of Renka and Cline.

2 Specification

```
SUBROUTINE EO1SAF (M, X, Y, F, TRIANG, GRADS, IFAIL)
INTEGER M, TRIANG(7*M), IFAIL
REAL (KIND=nag_wp) X (M), Y(M), F(M), GRADS (2,M)
```


3 Description

E01SAF constructs an interpolating surface $F(x, y)$ through a set of m scattered data points $\left(x_{r}, y_{r}, f_{r}\right)$, for $r=1,2, \ldots, m$, using a method due to Renka and Cline. In the (x, y) plane, the data points must be distinct. The constructed surface is continuous and has continuous first derivatives.
The method involves firstly creating a triangulation with all the (x, y) data points as nodes, the triangulation being as nearly equiangular as possible (see Cline and Renka (1984)). Then gradients in the x - and y-directions are estimated at node r, for $r=1,2, \ldots, m$, as the partial derivatives of a quadratic function of x and y which interpolates the data value f_{r}, and which fits the data values at nearby nodes (those within a certain distance chosen by the algorithm) in a weighted least squares sense. The weights are chosen such that closer nodes have more influence than more distant nodes on derivative estimates at node r. The computed partial derivatives, with the f_{r} values, at the three nodes of each triangle define a piecewise polynomial surface of a certain form which is the interpolant on that triangle. See Renka and Cline (1984) for more detailed information on the algorithm, a development of that by Lawson (1977). The code is derived from Renka (1984).

The interpolant $F(x, y)$ can subsequently be evaluated at any point (x, y) inside or outside the domain of the data by a call to E01SBF. Points outside the domain are evaluated by extrapolation.

4 References

Cline A K and Renka R L (1984) A storage-efficient method for construction of a Thiessen triangulation Rocky Mountain J. Math. 14 119-139
Lawson C L (1977) Software for C^{1} surface interpolation Mathematical Software III (ed J R Rice) 161194 Academic Press

Renka R L (1984) Algorithm 624: triangulation and interpolation of arbitrarily distributed points in the plane ACM Trans. Math. Software 10 440-442
Renka R L and Cline A K (1984) A triangle-based C^{1} interpolation method Rocky Mountain J. Math. 14 223-237

5 Parameters

1: M - INTEGER
Input
On entry: m, the number of data points.
Constraint: $\mathrm{M} \geq 3$.

On entry: the coordinates of the r th data point, for $r=1,2, \ldots, m$. The data points are accepted in any order, but see Section 9.
Constraint: the (x, y) nodes must not all be collinear, and each node must be unique.
5: \quad TRIANG $(7 \times \mathrm{M})-$ INTEGER array
Output
On exit: a data structure defining the computed triangulation, in a form suitable for passing to E01SBF.

6: $\quad \operatorname{GRADS}(2, \mathrm{M})-\operatorname{REAL}(\mathrm{KIND}=$ nag_wp $)$ array
Output
On exit: the estimated partial derivatives at the nodes, in a form suitable for passing to E01SBF. The derivatives at node r with respect to x and y are contained in $\operatorname{GRADS}(1, r)$ and $\operatorname{GRADS}(2, r)$ respectively, for $r=1,2, \ldots, m$.

7: IFAIL - INTEGER
On entry: IFAIL must be set to $0,-1$ or 1 . If you are unfamiliar with this parameter you should refer to Section 3.3 in the Essential Introduction for details.

For environments where it might be inappropriate to halt program execution when an error is detected, the value -1 or 1 is recommended. If the output of error messages is undesirable, then the value 1 is recommended. Otherwise, if you are not familiar with this parameter, the recommended value is 0 . When the value -1 or 1 is used it is essential to test the value of IFAIL on exit.

On exit: IFAIL $=0$ unless the routine detects an error or a warning has been flagged (see Section 6).

6 Error Indicators and Warnings

If on entry IFAIL $=0$ or -1 , explanatory error messages are output on the current error message unit (as defined by X04AAF).

Errors or warnings detected by the routine:
IFAIL $=1$
On entry, $\mathrm{M}<3$.
IFAIL $=2$
On entry, all the (X, Y) pairs are collinear.
IFAIL $=3$
On entry, $(\mathrm{X}(i), \mathrm{Y}(i))=(\mathrm{X}(j), \mathrm{Y}(j))$ for some $i \neq j$.
IFAIL $=-99$
An unexpected error has been triggered by this routine. Please contact NAG.
See Section 3.8 in the Essential Introduction for further information.
IFAIL $=-399$
Your licence key may have expired or may not have been installed correctly.
See Section 3.7 in the Essential Introduction for further information.

IFAIL $=-999$
Dynamic memory allocation failed.
See Section 3.6 in the Essential Introduction for further information.

7 Accuracy

On successful exit, the computational errors should be negligible in most situations but you should always check the computed surface for acceptability, by drawing contours for instance. The surface always interpolates the input data exactly.

8 Parallelism and Performance

Not applicable.

9 Further Comments

The time taken for a call of E01SAF is approximately proportional to the number of data points, m. The routine is more efficient if, before entry, the values in X, Y and F are arranged so that the X array is in ascending order.

10 Example

This example reads in a set of 30 data points and calls E01SAF to construct an interpolating surface. It then calls E01SBF to evaluate the interpolant at a sample of points on a rectangular grid.
Note that this example is not typical of a realistic problem: the number of data points would normally be larger, and the interpolant would need to be evaluated on a finer grid to obtain an accurate plot, say.

10.1 Program Text

```
    Program eO1safe
    EO1SAF Example Program Text
    Mark 25 Release. NAG Copyright 2014.
    .. Use Statements ..
    Use nag_library, Only: e01saf, e01sbf, nag_wp
    .. Implicit None Statement ..
    Implicit None
    .. Parameters ..
    Integer, Parameter :: nin = 5, nout = 6
    .. Local Scalars ..
    Real (kind=nag_wp) :: hx, hy, xhi, xlo, yhi, ylo
    Integer :: i, ifail, j, m, nx, ny
    .. Local Arrays ..
    Real (Kind=nag_wp), Allocatable :: f(:), grads(:,:), pf(:), px(:), &
    Integer, Allocatable :: triang(:)
    .. Intrinsic Procedures ..
    Intrinsic :: real
    .. Executable Statements ..
    Write (nout,*) 'EO1SAF Example Program Results'
    Skip heading in data file
    Read (nin,*)
    Read (nin,*) m
    Allocate (x(m),y(m),f(m),grads(2,m),triang(7*m))
    Do i = 1, m
        Read (nin,*) x(i), y(i), f(i)
    End Do
```

```
! Generate the triangulation and gradients.
    ifail = 0
Call eOlsaf(m,x,y,f,triang,grads,ifail)
Evaluate the interpolant on a rectangular grid at NX*NY
points over the domain (XLO to XHI) x (YLO to YHI).
Read (nin,*) nx, xlo, xhi
Read (nin,*) ny, ylo, yhi
Allocate (px(nx),py(ny),pf(nx))
hx = (xhi-xlo)/real(nx-1,kind=nag_wp)
px(1) = xlo
Do i = 2, nx
    px(i) = px(i-1) + hx
End Do
hy = (yhi-ylo)/real(ny-1,kind=nag_wp)
py(1) = ylo
Do i = 2, ny
    py(i) = py(i-1) + hy
End Do
Write (nout,*)
Write (nout,99999) , X', (px(i),i=1,nx)
Write (nout,*) ' Y'
Do i = ny, 1, -1
    Do j = 1, nx
        ifail = 0
        Call e01sbf(m,x,y,f,triang,grads,px(j),py(i),pf(j),ifail)
    End Do
    Write (nout,99998) py(i), (pf(j),j=1,nx)
End Do
99999 Format (1X,A,7F8.2)
99998 Format (1X,F8.2,3X,7F8.2)
End Program e01safe
```


10.2 Program Data

EO1SAF Example Program Data				
30			M, the number of data points	
11.16	1.24	22.15	$\mathrm{X}, \mathrm{Y}, \mathrm{F}$ data point definition	
12.85	3.06	22.11		
19.85	10.72	7.97		
19.72	1.39	16.83		
15.91	7.74	15.30		
0.00	20.00	34.60		
20.87	20.00	5.74		
3.45	12.78	41.24		
14.26	17.87	10.74		
17.43	3.46	18.60		
22.80	12.39	5.47		
7.58	1.98	29.87		
25.00	11.87	4.40		
0.00	0.00	58.20		
9.66	20.00	4.73		
5.22	14.66	40.36		
17.25	19.57	6.43		
25.00	3.87	8.74		
12.13	10.79	13.71		

22.23	6.21	10.25
11.52	8.53	15.74
15.20	0.00	21.60
7.54	10.69	19.31
17.32	13.78	12.11
2.14	15.03	53.10
0.51	8.37	49.43
22.69	19.63	3.25
5.47	17.13	28.63
21.67	14.36	5.52
3.31	0.33	44.08
7	3.0	21.0
6	2.0	17.0

End of the data points
Grid definition, X axis
Grid definition, Y axis

10.3 Program Results

EO1SAF Example Program Results

	X	3.00	6.00	9.00	12.00	15.00	18.00
Y				21.00			
17.00	41.25	27.62	18.03	12.29	11.68	9.09	5.37
14.00	47.61	36.66	22.87	14.02	13.44	11.20	6.46
11.00	38.55	25.25	16.72	13.83	13.08	10.71	6.88
8.00	37.90	23.97	16.79	16.43	15.46	13.02	9.30
5.00	40.49	29.26	22.51	20.72	19.30	16.72	12.87
2.00	43.52	33.91	26.59	22.23	21.15	18.67	14.88

