NAG Library Routine Document
 E02BBF

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms and other implementation-dependent details.

1 Purpose

E02BBF evaluates a cubic spline from its B-spline representation.

2 Specification

```
SUBROUTINE EO2BBF (NCAP7, LAMDA, C, X, S, IFAIL)
INTEGER NCAP7, IFAIL
REAL (KIND=nag_wp) LAMDA(NCAP7), C(NCAP7), X, S
```


3 Description

E02BBF evaluates the cubic spline $s(x)$ at a prescribed argument x from its augmented knot set λ_{i}, for $i=1,2, \ldots, n+7$, (see E02BAF) and from the coefficients c_{i}, for $i=1,2, \ldots, q$ in its B-spline representation

$$
s(x)=\sum_{i=1}^{q} c_{i} N_{i}(x)
$$

Here $q=\bar{n}+3$, where \bar{n} is the number of intervals of the spline, and $N_{i}(x)$ denotes the normalized B-spline of degree 3 defined upon the knots $\lambda_{i}, \lambda_{i+1}, \ldots, \lambda_{i+4}$. The prescribed argument x must satisfy $\lambda_{4} \leq x \leq \lambda_{\bar{n}+4}$.
It is assumed that $\lambda_{j} \geq \lambda_{j-1}$, for $j=2,3, \ldots, \bar{n}+7$, and $\lambda_{\bar{n}+4}>\lambda_{4}$.
If x is a point at which 4 knots coincide, $s(x)$ is discontinuous at x; in this case, S contains the value defined as x is approached from the right.

The method employed is that of evaluation by taking convex combinations due to de Boor (1972). For further details of the algorithm and its use see Cox (1972) and Cox and Hayes (1973).
It is expected that a common use of E02BBF will be the evaluation of the cubic spline approximations produced by E02BAF. A generalization of E02BBF which also forms the derivative of $s(x)$ is E02BCF. E02BCF takes about 50% longer than E02BBF.

4 References

Cox M G (1972) The numerical evaluation of B-splines J. Inst. Math. Appl. 10 134-149
Cox M G (1978) The numerical evaluation of a spline from its B-spline representation J. Inst. Math. Appl. 21 135-143

Cox M G and Hayes J G (1973) Curve fitting: a guide and suite of algorithms for the non-specialist user NPL Report NAC26 National Physical Laboratory
de Boor C (1972) On calculating with B-splines J. Approx. Theory 6 50-62

5 Parameters

1: NCAP7 - INTEGER
Input
On entry: $\bar{n}+7$, where \bar{n} is the number of intervals (one greater than the number of interior knots, i.e., the knots strictly within the range λ_{4} to $\lambda_{\bar{n}+4}$) over which the spline is defined.

Constraint: NCAP7 ≥ 8.

2: LAMDA(NCAP7) - REAL (KIND=nag_wp) array
Input
On entry: LAMDA (j) must be set to the value of the j th member of the complete set of knots, λ_{j}, for $j=1,2, \ldots, \bar{n}+7$.
Constraint: the LAMDA (j) must be in nondecreasing order with LAMDA(NCAP7 -3$)>$ LAMDA(4).

3: $\mathrm{C}($ NCAP7) - REAL (KIND=nag_wp) array
Input
On entry: the coefficient c_{i} of the B-spline $N_{i}(x)$, for $i=1,2, \ldots, \bar{n}+3$. The remaining elements of the array are not referenced.

4: X - REAL (KIND=nag_wp) Input
On entry: the argument x at which the cubic spline is to be evaluated.
Constraint: LAMDA(4) $\leq \mathrm{X} \leq$ LAMDA(NCAP7 - 3).
5: $\quad \mathrm{S}-\mathrm{REAL}(\mathrm{KIND}=$ nag_wp)
Output
On exit: the value of the spline, $s(x)$.
6: IFAIL - INTEGER
Input/Output
On entry: IFAIL must be set to $0,-1$ or 1 . If you are unfamiliar with this parameter you should refer to Section 3.3 in the Essential Introduction for details.

For environments where it might be inappropriate to halt program execution when an error is detected, the value -1 or 1 is recommended. If the output of error messages is undesirable, then the value 1 is recommended. Otherwise, if you are not familiar with this parameter, the recommended value is 0 . When the value -1 or 1 is used it is essential to test the value of IFAIL on exit.

On exit: IFAIL $=0$ unless the routine detects an error or a warning has been flagged (see Section 6).

6 Error Indicators and Warnings

If on entry IFAIL $=0$ or -1 , explanatory error messages are output on the current error message unit (as defined by X04AAF).
Errors or warnings detected by the routine:
IFAIL $=1$
The parameter X does not satisfy LAMDA(4) $\leq \mathrm{X} \leq$ LAMDA(NCAP7 -3).
In this case the value of S is set arbitrarily to zero.
IFAIL $=2$
NCAP7 <8, i.e., the number of interior knots is negative.

IFAIL $=-99$
An unexpected error has been triggered by this routine. Please contact NAG.
See Section 3.8 in the Essential Introduction for further information.
IFAIL $=-399$
Your licence key may have expired or may not have been installed correctly.
See Section 3.7 in the Essential Introduction for further information.
IFAIL $=-999$
Dynamic memory allocation failed.
See Section 3.6 in the Essential Introduction for further information.

7 Accuracy

The computed value of $s(x)$ has negligible error in most practical situations. Specifically, this value has an absolute error bounded in modulus by $18 \times c_{\max } \times$ machine precision, where $c_{\max }$ is the largest in modulus of c_{j}, c_{j+1}, c_{j+2} and c_{j+3}, and j is an integer such that $\lambda_{j+3} \leq x \leq \lambda_{j+4}$. If c_{j}, c_{j+1}, c_{j+2} and c_{j+3} are all of the same sign, then the computed value of $s(x)$ has a relative error not exceeding $20 \times$ machine precision in modulus. For further details see Cox (1978).

8 Parallelism and Performance

Not applicable.

9 Further Comments

The time taken is approximately $\mathrm{C} \times(1+0.1 \times \log (\bar{n}+7))$ seconds, where C is a machine-dependent constant.

Note: the routine does not test all the conditions on the knots given in the description of LAMDA in Section 5, since to do this would result in a computation time approximately linear in $\bar{n}+7$ instead of $\log (\bar{n}+7)$. All the conditions are tested in E02BAF, however.

10 Example

Evaluate at nine equally-spaced points in the interval $1.0 \leq x \leq 9.0$ the cubic spline with (augmented) knots $1.0,1.0,1.0,1.0,3.0,6.0,8.0,9.0,9.0,9.0,9.0$ and normalized cubic B-spline coefficients 1.0 , 2.0, 4.0, 7.0, 6.0, 4.0, 3.0.

The example program is written in a general form that will enable a cubic spline with \bar{n} intervals, in its normalized cubic B-spline form, to be evaluated at m equally-spaced points in the interval $\operatorname{LAMDA}(4) \leq x \leq \operatorname{LAMDA}(\bar{n}+4)$. The program is self-starting in that any number of datasets may be supplied.

10.1 Program Text

```
Program e02bbfe
    EO2BBF Example Program Text
    Mark 25 Release. NAG Copyright 2014.
    .. Use Statements ..
    Use nag_library, Only: e02bbf, nag_wp
    .. Implicit None Statement ..
    Implicit None
    .. Parameters ..
    Integer, Parameter :: nin = 5, nout = 6
```

```
! .. Local Scalars ..
    Real (Kind=nag_wp) :: a, b, s, x
    Integer :: ifail, j, m, ncap, ncap7, r
! .. Local Arrays ..
    Real (Kind=nag_wp), Allocatable :: c(:), lamda(:)
    .. Intrinsic Procedures ..
    Intrinsic :: real
    .. Executable Statements ..
    Write (nout,*) 'EO2BBF Example Program Results'
! Skip heading in data file
    Read (nin,*)
    Read (nin,*) m
    Read (nin,*) ncap
    ncap7 = ncap + 7
    Allocate (lamda(ncap7),c(ncap7))
    Read (nin,*) lamda(1:ncap7)
    Read (nin,*) c(1:ncap+3)
    a = lamda(4)
    b = lamda(ncap+4)
    Do r = 1,m
        x = (real(m-r,kind=nag_wp)*a+real(r-1,kind=nag_wp)*b)/ &
            real(m-1,kind=nag_wp)
        ifail = 0
        Call e02bbf(ncap7,lamda,c,x,s,ifail)
        If (r==1) Then
            Write (nout,*)
            Write (nout,*) ' J LAMDA(J) B-spline coefficient (J-2)'
            Write (nout,*)
            Do j = 1, ncap7
                If (j<3 .Or. j>ncap+5) Then
                    Write (nout,99999) j, lamda(j)
                Else
                    Write (nout,99999) j, lamda(j), c(j-2)
                End If
            End Do
            Write (nout,*)
            Write (nout,*) , R Argument Value of cubic spline'
            Write (nout,*)
        End If
        Write (nout,99999) r, x, S
End Do
99999 Format (1X,I3,F14.4,F21.4)
    End Program e02bbfe
```


10.2 Program Data

```
EO2BBF Example Program Data
    9
        1.00
        1.00
        1.00
        1.00
        3.00
        6.00
        8.00
        9.00
```

9.00
9.00
9.00
1.00
2.00
4.00
7.00
6.00
4.00
3.00

10.3 Program Results

Example Program
Evaluation of Cubic Spline Representation

