
NAG Library Routine Document

E02BFF

Note: before using this routine, please read the Users’ Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

E02BFF evaluates a cubic spline and up to its first three derivatives from its B-spline representation at a
vector of points. E02BFF can be used to compute the values and derivatives of cubic spline fits and
interpolants produced by reference to E01BAF, E02BAF and E02BEF.

2 Specification

SUBROUTINE E02BFF (START, NCAP7, LAMDA, C, DERIV, XORD, X, IXLOC, NX, S,
LDS, IWRK, LIWRK, IFAIL)

&

INTEGER START, NCAP7, DERIV, XORD, IXLOC(NX), NX, LDS,
IWRK(LIWRK), LIWRK, IFAIL

&

REAL (KIND=nag_wp) LAMDA(NCAP7), C(NCAP7), X(NX), S(LDS,*)

3 Description

E02BFF evaluates the cubic spline s xð Þ and optionally derivatives up to order 3 for a vector of points xj ,
for j ¼ 1; 2; . . . ; nx. It is assumed that s xð Þ is represented in terms of its B-spline coefficients ci, for
i ¼ 1; 2; . . . ; �nþ 3, and (augmented) ordered knot set �i, for i ¼ 1; 2; . . . ; �nþ 7, (see E02BAF and
E02BEF), i.e.,

s xð Þ ¼
Xq
i¼1

ciNi xð Þ:

Here q ¼ �nþ 3, �n is the number of intervals of the spline and Ni xð Þ denotes the normalized B-spline of
degree 3 (order 4) defined upon the knots �i; �iþ1; . . . ; �iþ4. The knots �5; �6; . . . ; ��nþ3 are the interior
knots. The remaining knots, �1, �2, �3, �4 and ��nþ4, ��nþ5, ��nþ6, � �nþ7 are the exterior knots. The knots
�4 and ��nþ4 are the boundaries of the spline.

Only abscissae satisfying,

�4 � xj � ��nþ4;

will be evaluated. At a simple knot �i (i.e., one satisfying �i�1 < �i < �iþ1), the third derivative of the
spline is, in general, discontinuous. At a multiple knot (i.e., two or more knots with the same value),
lower derivatives, and even the spline itself, may be discontinuous. Specifically, at a point x ¼ u where
(exactly) r knots coincide (such a point is termed a knot of multiplicity r), the values of the derivatives
of order 4� j, for j ¼ 1; 2; . . . ; r, are, in general, discontinuous. (Here 1 � r � 4; r > 4 is not
meaningful.) The maximum order of the derivatives to be evaluated Dord, and the left- or right-
handedness of the computation when an abscissa corresponds exactly to an interior knot, are determined
by the value of DERIV.

Each abscissa (point at which the spline is to be evaluated) xj contained in X has an associated enclosing
interval number, ixlocj either supplied or returned in IXLOC (see parameter START). A simple call to
E02BFF would set START ¼ 0 and the contents of IXLOC need never be set nor referenced, and the
following description on modes of operation can be ignored. However, where efficiency is an important
consideration, the following description will help to choose the appropriate mode of operation.

The interval numbers are used to determine which B-splines must be evaluated for a given abscissa, and
are defined as

E02 – Curve and Surface Fitting E02BFF

Mark 25 E02BFF.1



ixlocj ¼

� 0 xj < �1

4 �4 ¼ xj
k �k < xj < �kþ1

k �4 < �k ¼ xj left derivatives
k xj ¼ �kþ1 < ��nþ4 right derivatives or no derivatives
�nþ 4 ��nþ4 ¼ xj
> �nþ 7 xj > ��nþ7

0
BBBBBBB@

1
CCCCCCCA

ð1Þ

The algorithm has two modes of vectorization, termed here sorted and unsorted, which are selectable by
the parameter START.

Furthermore, if the supplied abscissae are sufficiently ordered, as indicated by the parameter XORD, the
algorithm will take advantage of significantly faster methods for the determination of both the interval
numbers and the subsequent spline evaluations.

The sorted mode has two phases, a sorting phase and an evaluation phase. This mode is recommended if
there are many abscissae to evaluate relative to the number of intervals of the spline, or the abscissae are
distributed relatively densely over a subsection of the spline. In the first phase, ixlocj is determined for
each xj and a permutation is calculated to sort the xj by interval number. The first phase may be either
partially or completely by-passed using the parameter START if the enclosing segments and/or the
subsequent ordering are already known a priori, for example if multiple spline coefficients C are to be
evaluated over the same set of knots LAMDA.

In the second phase of the sorted mode, spline approximations are evaluated by segment, so that non-
abscissa dependent calculations over a segment may be reused in the evaluation for all abscissae
belonging to a specific segment. For example, all third derivatives of all abscissae in the same segment
will be identical.

In the unsorted mode of vectorization, no a priori segment sorting is performed, and if the abscissae are
not sufficiently ordered, the evaluation at an abscissa will be independent of evaluations at other
abscissae; also non-abscissa dependent calculations over a segment will be repeated for each abscissa in
a segment. This may be quicker if the number of abscissa is small in comparison to the number of knots
in the spline, and they are distributed sparsely throughout the domain of the spline. This is effectively a
direct vectorization of E02BBF and E02BCF, although if the enclosing interval numbers ixlocj are
known, these may again be provided.

If the abscissae are sufficiently ordered, then once the first abscissa in a segment is known, an efficient
algorithm will be used to determine the location of the final abscissa in this segment. The spline will
subsequently be evaluated in a vectorized manner for all the abscissae indexed between the first and last
of the current segment.

If no derivatives are required, the spline evaluation is calculated by taking convex combinations due to
de Boor (1972). Otherwise, the calculation of s xð Þ and its derivatives is based upon,

(i) evaluating the nonzero B-splines of orders 1, 2, 3 and 4 by recurrence (see Cox (1972) and Cox
(1978)),

(ii) computing all derivatives of the B-splines of order 4 by applying a second recurrence to these
computed B-spline values (see de Boor (1972)),

(iii) multiplying the fourth-order B-spline values and their derivative by the appropriate B-spline
coefficients, and summing, to yield the values of s xð Þ and its derivatives.

The method of convex combinations is significantly faster than the recurrence based method. If higher
derivatives of order 2 or 3 are not required, as much computation as possible is avoided.

4 References

Cox M G (1972) The numerical evaluation of B-splines J. Inst. Math. Appl. 10 134–149

Cox M G (1978) The numerical evaluation of a spline from its B-spline representation J. Inst. Math.
Appl. 21 135–143

de Boor C (1972) On calculating with B-splines J. Approx. Theory 6 50–62

E02BFF NAG Library Manual

E02BFF.2 Mark 25



5 Parameters

1: START – INTEGER Input

On entry: indicates the completion state of the first phase of the algorithm.

START ¼ 0
The enclosing interval numbers ixlocj for the abscissae xj contained in X have not been
determined, and you wish to use the sorted mode of vectorization.

START ¼ 1
The enclosing interval numbers ixlocj have been determined and are provided in IXLOC,
however the required permutation and interval related information has not been determined
and you wish to use the sorted mode of vectorization.

START ¼ 2
You wish to use the sorted mode of vectorization, and the entire first phase has been
completed, with the enclosing interval numbers supplied in IXLOC, and the required
permutation and interval related information provided in IWRK (from a previous call to
E02BFF).

START ¼ 10
The enclosing interval numbers ixlocj for the abscissae xj contained in X have not been
determined, and you wish to use the unsorted mode of vectorization.

START ¼ 11
The enclosing interval numbers ixlocj for the abscissae xj contained in X have been
supplied in IXLOC, and you wish to use the unsorted mode of vectorization.

Constraint: START ¼ 0, 1, 2, 10 or 11.

Additional: START ¼ 0 or 10 should be used unless you are sure that the knot set is unchanged
between calls.

2: NCAP7 – INTEGER Input

On entry: �nþ 7, where �n is the number of intervals of the spline (which is one greater than the
number of interior knots, i.e., the knots strictly within the range �4 to ��nþ4 over which the spline
is defined). Note that if E02BEF was used to generate the knots and spline coefficients then
NCAP7 should contain the same value as returned in N by E02BEF.

Constraint: NCAP7 � 8.

3: LAMDAðNCAP7Þ – REAL (KIND=nag_wp) array Input

On entry: LAMDAðjÞ must be set to the value of the jth member of the complete set of knots, �j ,
for j ¼ 1; 2; . . . ; �nþ 7.

Constraint: the LAMDAðjÞ must be in nondecreasing order with
LAMDAðNCAP7� 3Þ > LAMDAð4Þ.

4: CðNCAP7Þ – REAL (KIND=nag_wp) array Input

On entry: the coefficient ci of the B-spline Ni xð Þ, for i ¼ 1; 2; . . . ; �nþ 3. The remaining elements
of the array are not referenced.

5: DERIV – INTEGER Input

On entry: the order of derivatives required.

E02 – Curve and Surface Fitting E02BFF

Mark 25 E02BFF.3



If DERIV < 0 left derivatives are calculated, otherwise right derivatives are calculated. For
abscissae satisfying xj ¼ �4 or xj ¼ ��nþ4 only right-handed or left-handed computation will be
used respectively. For abscissae which do not coincide exactly with a knot, the handedness of the
computation is immaterial.

DERIV ¼ 0
No derivatives required.

DERIV ¼ �1
Only s xð Þ and its first derivative are required.

DERIV ¼ �2
Only s xð Þ and its first and second derivatives are required.

DERIV ¼ �3
s xð Þ and its first, second and third derivatives are required.

Note: if DERIVj j is greater than 3 only the derivatives up to and including 3 will be returned.

6: XORD – INTEGER Input

On entry: indicates whether X is supplied in a sufficiently ordered manner. If X is sufficiently
ordered E02BFF will complete faster.

XORD ¼ 1
The abscissae in X are ordered at least by ascending interval, in that any two abscissae
contained in the same interval are only separated by abscissae in the same interval, and the
intervals are arranged in ascending order. For example, xj < xjþ1, for j ¼ 1; 2; . . . ;NX� 1.

XORD 6¼ 1
The abscissae in X are not sufficiently ordered.

7: XðNXÞ – REAL (KIND=nag_wp) array Input

On entry: the abscissae xj , for j ¼ 1; 2; . . . ; nx. If START ¼ 0 or 10 then evaluations will only be
performed for these xj satisfying �4 � xj � ��nþ4. Otherwise evaluation will be performed unless
the corresponding element of IXLOC contains an invalid interval number. Please note that if the
IXLOCðjÞ is a valid interval number then no check is made that XðjÞ actually lies in that interval.

Constraint: at least one abscissa must fall between LAMDAð4Þ and LAMDAðNCAP7� 3Þ.

8: IXLOCðNXÞ – INTEGER array Input/Output

On entry: if START ¼ 1, 2 or 11, if you wish xj to be evaluated, IXLOCðjÞ must be the enclosing
interval number ixlocj of the abscissae xj (see (1)). If you do not wish xj to be evaluated, you
may set the interval number to be either less than 4 or greater than �nþ 4.

Otherwise, IXLOC need not be set.

On exit: if START ¼ 1, 2 or 11, IXLOC is unchanged on exit.

Otherwise, IXLOCðjÞ, contains the enclosing interval number ixlocj, for the abscissa supplied in
XðjÞ, for j ¼ 1; 2; . . . ; nx. Evaluations will only be performed for abscissae xj satisfying
�4 � xj � ��nþ4. If evaluation is not performed IXLOCðjÞ is set to 0 if xj < �4 or �nþ 7 if
xj > ��nþ4.

Constraint: if START ¼ 1, 2 or 11, at least one element of IXLOC must be between 4 and
NCAP7� 3.

9: NX – INTEGER Input

On entry: nx, the total number of abscissae contained in X, including any that will not be
evaluated.

Constraint: NX � 1.

E02BFF NAG Library Manual

E02BFF.4 Mark 25



10: SðLDS; �Þ – REAL (KIND=nag_wp) array Output

Note: the second dimension of the array S must be at least Dord þ 1, see DERIV for the definition
of Dord.

On exit: if xj is valid, Sðj; dÞ will contain the (d � 1)th derivative of s xð Þ, for
d ¼ 1; 2; . . . ;Dord þ 1 and j ¼ 1; 2; . . . ; nx. In particular, Sðj; 1Þ will contain the approximation
of s xj

� �
for all legal values in X.

11: LDS – INTEGER Input

On entry: the first dimension of the array S as declared in the (sub)program from which E02BFF
is called.

Constraint: LDS � NX, regardless of the acceptability of the elements of X.

12: IWRKðLIWRKÞ – INTEGER array Input/Output

On entry: if START ¼ 2, IWRK must be unchanged from a previous call to E02BFF with
START ¼ 0 or 1.

Otherwise, IWRK need not be set.

On exit: if START ¼ 10 or 11, IWRK is unchanged on exit.

Otherwise, IWRK contains the required permutation of elements of X, if any, and information
related to the division of the abscissae xj between the intervals derived from LAMDA.

13: LIWRK – INTEGER Input

On entry: the dimension of the array IWRK as declared in the (sub)program from which E02BFF
is called.

Constraint: if START ¼ 0, 1 or 2, LIWRK � 3þ 3� NX.

14: IFAIL – INTEGER Input/Output

On entry: IFAIL must be set to 0, �1 or 1. If you are unfamiliar with this parameter you should
refer to Section 3.3 in the Essential Introduction for details.

For environments where it might be inappropriate to halt program execution when an error is
detected, the value �1 or 1 is recommended. If the output of error messages is undesirable, then
the value 1 is recommended. Otherwise, because for this routine the values of the output
parameters may be useful even if IFAIL 6¼ 0 on exit, the recommended value is �1. When the
value �1 or 1 is used it is essential to test the value of IFAIL on exit.

On exit: IFAIL ¼ 0 unless the routine detects an error or a warning has been flagged (see
Section 6).

6 Error Indicators and Warnings

If on entry IFAIL ¼ 0 or �1, explanatory error messages are output on the current error message unit (as
defined by X04AAF).

Note: E02BFF may return useful information for one or more of the following detected errors or
warnings.

Errors or warnings detected by the routine:

IFAIL ¼ 1

On entry, at least one element of X has an enclosing interval number in IXLOC outside the set
allowed by the provided spline. The spline has been evaluated for all X with enclosing interval
numbers inside the allowable set.
valueh i entries of X were indexed below the lower bound valueh i.
valueh i entries of X were indexed above the upper bound valueh i.

E02 – Curve and Surface Fitting E02BFF

Mark 25 E02BFF.5



IFAIL ¼ 2

On entry, all elements of X had enclosing interval numbers in IXLOC outside the domain allowed
by the provided spline.
valueh i entries of X were indexed below the lower bound valueh i.
valueh i entries of X were indexed above the upper bound valueh i.

IFAIL ¼ 11

On entry, START ¼ valueh i.
Constraint: START ¼ 0, 1, 2, 10 or 11.

IFAIL ¼ 12

On entry, START ¼ 2 and NX is not consistent with the previous call to E02BFF.
On entry, NX ¼ valueh i.
Constraint: NX ¼ valueh i.

IFAIL ¼ 21

On entry, NCAP7 ¼ valueh i.
Constraint: NCAP7 � 8.

IFAIL ¼ 31

On entry, LAMDAð4Þ ¼ valueh i, NCAP7 ¼ valueh i and LAMDAðNCAP7� 3Þ ¼ valueh i.
Constraint: LAMDAð4Þ < LAMDAðNCAP7� 3Þ.

IFAIL ¼ 91

On entry, NX ¼ valueh i.
Constraint: NX � 1.

IFAIL ¼ 111

On entry, LDS ¼ valueh i.
Constraint: LDS � NX ¼ valueh i.

IFAIL ¼ 131

On entry, LIWRK ¼ valueh i.
Constraint: LIWRK � 3� NXþ 3 ¼ valueh i.

IFAIL ¼ �99

An unexpected error has been triggered by this routine. Please contact NAG.

See Section 3.8 in the Essential Introduction for further information.

IFAIL ¼ �399

Your licence key may have expired or may not have been installed correctly.

See Section 3.7 in the Essential Introduction for further information.

IFAIL ¼ �999

Dynamic memory allocation failed.

See Section 3.6 in the Essential Introduction for further information.

E02BFF NAG Library Manual

E02BFF.6 Mark 25



7 Accuracy

The computed value of s xð Þ has negligible error in most practical situations. Specifically, this value has
an absolute error bounded in modulus by 18� cmax �machine precision, where cmax is the largest in
modulus of cj, cj þ 1, cj þ 2 and cj þ 3, and j is an integer such that �j þ 3 < x � �j þ 4. If cj, cj þ 1,
cj þ 2 and cj þ 3 are all of the same sign, then the computed value of s xð Þ has relative error bounded by
20�machine precision. For full details see Cox (1978).

No complete error analysis is available for the computation of the derivatives of s xð Þ. However, for most
practical purposes the absolute errors in the computed derivatives should be small. Note that this is in
comparison to the derivatives of the spline, which may or may not be comparable to the derivatives of
the function that has been approximated by the spline.

8 Parallelism and Performance

E02BFF is threaded by NAG for parallel execution in multithreaded implementations of the NAG
Library.

Please consult the X06 Chapter Introduction for information on how to control and interrogate the
OpenMP environment used within this routine. Please also consult the Users’ Note for your
implementation for any additional implementation-specific information.

9 Further Comments

If using the sorted mode of vectorization, the time required for the first phase to determine the enclosing
intervals is approximately proportional to O nxlog �nð Þð Þ. The time required to then generate the required
permutations and interval information is O nxð Þ if X is ordered sufficiently, or at worst
O nx min nx; �nð Þlog min nx; �nð Þð Þð Þ if X is not ordered. The time required by the second phase is then
proportional to O nxð Þ.
If using the unsorted mode of vectorization, the time required is proportional to O nxlog �nð Þð Þ if the
enclosing interval numbers are not provided, or O nxð Þ if they are provided. However, the repeated
calculation of various quantities will typically make this slower than the sorted mode when the ratio of
abscissae to knots is high, or the abscissae are densely distributed over a relatively small subset of the
intervals of the spline.

Note: the routine does not test all the conditions on the knots given in the description of LAMDA in
Section 5, since to do this would result in a computation time with a linear dependency upon �n instead
of log �nð Þ. All the conditions are tested in E02BAF and E02BEF, however.

10 Example

This example fits a spline through a set of data points using E02BEF and then evaluates the spline at a
set of supplied abscissae.

10.1 Program Text

Program e02bffe

! E02BFF Example Program Text

! Mark 25 Release. NAG Copyright 2014.

! .. Use Statements ..
Use nag_library, Only: e02bef, e02bff, nag_wp

! .. Implicit None Statement ..
Implicit None

! .. Parameters ..
Integer, Parameter :: nin = 5, nout = 6

! .. Local Scalars ..
Real (Kind=nag_wp) :: fp, sfac
Integer :: deriv, ifail, ifail_e02bef, lds, &

liwrk, lwrk, m, ncap7, nest, nx, r, &

E02 – Curve and Surface Fitting E02BFF

Mark 25 E02BFF.7



sd2, start, xord
Character (1) :: cstart

! .. Local Arrays ..
Real (Kind=nag_wp), Allocatable :: c(:), lamda(:), s(:,:), wdata(:), &

wrk(:), x(:), xdata(:), ydata(:)
Integer, Allocatable :: iwrk(:), ixloc(:)

! .. Intrinsic Procedures ..
Intrinsic :: abs, min

! .. Executable Statements ..
Write (nout,*) ’E02BFF Example Program Results’

! Skip heading in data file
Read (nin,*)

! Input the number of data points for the spline,
! followed by the data points (XDATA), the function values (YDATA)
! and the weights (WDATA).

Read (nin,*) m
nest = m + 4
lwrk = 4*m + 16*nest + 41

! allocate memory for generating the spline
Allocate (xdata(m),ydata(m),wdata(m),iwrk(nest),lamda(nest),wrk(lwrk), &

c(nest))

Read (nin,*)(xdata(r),ydata(r),wdata(r),r=1,m)

cstart = ’C’

! Read in the requested smoothing factor.
Read (nin,*) sfac

! Determine the spline approximation.

ifail_e02bef = 0
Call e02bef(cstart,m,xdata,ydata,wdata,sfac,nest,ncap7,lamda,c,fp,wrk, &

lwrk,iwrk,ifail_e02bef)
If (ifail_e02bef/=0) Then

Write (nout,99997) &
’Failed to generate spline using data set provided.’

Write (nout,99996) ’E02BEF returned IFAIL = ’, ifail_e02bef
Go To 100

End If
Deallocate (iwrk)

! Read in the number of sample points requested.
Read (nin,*) nx

! Allocate memory for sample point locations and
! function and derivative approximations.

lds = nx
liwrk = 3 + 3*nx
Allocate (x(nx),s(lds,4),ixloc(nx),iwrk(liwrk))

! Read in sample points.
Read (nin,*) x(1:nx)

xord = 0
start = 0
deriv = 3
ifail = 1
Call e02bff(start,ncap7,lamda,c,deriv,xord,x,ixloc,nx,s,lds,iwrk,liwrk, &

ifail)
If (ifail>1) Then

Write (nout,99996) ’ E02BFF detected a fatal error. IFAIL = ’, ifail
Go To 100

End If

! Output the results.
Write (nout,*)
Write (nout,99999)

E02BFF NAG Library Manual

E02BFF.8 Mark 25



sd2 = min(abs(deriv),3) + 1
Do r = 1, nx

If (ixloc(r)>=4 .And. ixloc(r)<=ncap7-3) Then
Write (nout,99998) x(r), ixloc(r), s(r,1:sd2)

Else
Write (nout,99998) x(r), ixloc(r)

End If
End Do

100 Continue
99999 Format (’ x ixloc s(x) ds/dx &

& d2s/dx2 d3s/dx3 ’)
99998 Format (1X,F8.4,3X,I5,4(1X,Es12.4))
99997 Format (1X,A)
99996 Format (1X,A,1X,I5)

End Program e02bffe

10.2 Program Data

E02BFF Example Program Data
15 : M, the number of data points.
0.0000E+00 -1.1000E+00 1.00
5.0000E-01 -3.7200E-01 1.00
1.0000E+00 4.3100E-01 1.50
1.5000E+00 1.6900E+00 1.00
2.0000E+00 2.1100E+00 1.00
2.5000E+00 3.1000E+00 1.00
3.0000E+00 4.2300E+00 1.00
4.0000E+00 4.3500E+00 1.00
4.5000E+00 4.8100E+00 1.00
5.0000E+00 4.6100E+00 1.00
5.5000E+00 4.7900E+00 1.00
6.0000E+00 5.2300E+00 1.00
7.0000E+00 6.3500E+00 1.00
7.5000E+00 7.1900E+00 1.00
8.0000E+00 7.9700E+00 1.00 : xdata(1:m), ydata(1:m), wdata(1:m)
0.001 : S, smoothing factor.

20 : NX, the number of evaluation points.
6.5178 7.2463 1.0159 7.3070
5.0589 0.7803 2.2280 4.3751
7.6601 7.7191 1.2609 7.7647
7.6573 3.8830 6.4022 1.1351
3.3741 7.3259 6.3377 7.6759 : Unordered evaluation points x(1:nx).

10.3 Program Results

E02BFF Example Program Results

x ixloc s(x) ds/dx d2s/dx2 d3s/dx3
6.5178 14 5.7418E+00 1.0741E+00 5.6736E-01 1.3065E+00
7.2463 15 6.7486E+00 1.7074E+00 4.9054E-01 -2.8697E+00
1.0159 5 4.7469E-01 2.4179E+00 3.8175E+00 -2.2171E+01
7.3070 15 6.8531E+00 1.7319E+00 3.1634E-01 -2.8697E+00
5.0589 12 4.6105E+00 -1.0363E-01 2.9075E+00 -4.4467E+00
0.7803 4 6.6885E-03 1.6216E+00 2.5007E+00 7.5980E+00
2.2280 7 2.4751E+00 1.9559E+00 3.0615E+00 -6.6690E+00
4.3751 10 4.7199E+00 8.5194E-01 -3.0718E+00 -1.9866E+01
7.6601 15 7.4633E+00 1.6647E+00 -6.9696E-01 -2.8697E+00
7.7191 15 7.5602E+00 1.6186E+00 -8.6627E-01 -2.8697E+00
1.2609 5 1.1273E+00 2.6878E+00 -1.6146E+00 -2.2171E+01
7.7647 15 7.6330E+00 1.5761E+00 -9.9713E-01 -2.8697E+00
7.6573 15 7.4586E+00 1.6667E+00 -6.8892E-01 -2.8697E+00
3.8830 9 4.3152E+00 1.6458E-01 3.1754E+00 1.0296E+01
6.4022 14 5.6211E+00 1.0172E+00 4.1633E-01 1.3065E+00

E02 – Curve and Surface Fitting E02BFF

Mark 25 E02BFF.9



1.1351 5 7.8376E-01 2.7154E+00 1.1746E+00 -2.2171E+01
3.3741 9 4.4165E+00 -1.1809E-01 -2.0644E+00 1.0296E+01
7.3259 15 6.8859E+00 1.7374E+00 2.6211E-01 -2.8697E+00
6.3377 14 5.5563E+00 9.9310E-01 3.3206E-01 1.3065E+00
7.6759 15 7.4895E+00 1.6534E+00 -7.4230E-01 -2.8697E+00

E02BFF NAG Library Manual

E02BFF.10 (last) Mark 25


	E02BFF
	1 Purpose
	2 Specification
	3 Description
	4 References
	Cox (1972)
	Cox (1978)
	de Boor (1972)

	5 Parameters
	START
	NCAP7
	LAMDA
	C
	DERIV
	XORD
	X
	IXLOC
	NX
	S
	LDS
	IWRK
	LIWRK
	IFAIL

	6 Error Indicators and Warnings
	IFAIL=1
	IFAIL=2
	IFAIL=11
	IFAIL=12
	IFAIL=21
	IFAIL=31
	IFAIL=91
	IFAIL=111
	IFAIL=131
	IFAIL=-99
	IFAIL=-399
	IFAIL=-999

	7 Accuracy
	8 Parallelism and Performance
	9 Further Comments
	10 Example
	10.1 Program Text
	10.2 Program Data
	10.3 Program Results


	NAG Fortran Library Manual, Mark 25
	Copyright Statement
	Foreword
	Introduction
	Essential Introduction
	Mark 25 NAG Fortran Library News
	Multithreaded Routines
	Thread Safety
	Advice on Replacement Calls for Withdrawn/Superseded Routines
	Acknowledgements
	Online Documentation
	Index
	Implementation-specific Details for Users

	Chapters of the Library
	A00 - Library Identification
	A00 Chapter Introduction

	A02 - Complex Arithmetic
	A02 Chapter Introduction

	C02 - Zeros of Polynomials
	C02 Chapter Introduction

	C05 - Roots of One or More Transcendental Equations
	C05 Chapter Introduction

	C06 - Summation of Series
	C06 Chapter Introduction

	C09 - Wavelet Transforms
	C09 Chapter Introduction

	D01 - Quadrature
	D01 Chapter Introduction

	D02 - Ordinary Differential Equations
	D02 Chapter Introduction

	D03 - Partial Differential Equations
	D03 Chapter Introduction

	D04 - Numerical Differentiation
	D04 Chapter Introduction

	D05 - Integral Equations
	D05 Chapter Introduction

	D06 - Mesh Generation
	D06 Chapter Introduction

	E01 - Interpolation
	E01 Chapter Introduction

	E02 - Curve and Surface Fitting
	E02 Chapter Introduction

	E04 - Minimizing or Maximizing a Function
	E04 Chapter Introduction

	E05 - Global Optimization of a Function
	E05 Chapter Introduction

	F - Linear Algebra
	F Chapter Introduction

	F01 - Matrix Operations, Including Inversion
	F01 Chapter Introduction

	F02 - Eigenvalues and Eigenvectors
	F02 Chapter Introduction

	F03 - Determinants
	F03 Chapter Introduction

	F04 - Simultaneous Linear Equations
	F04 Chapter Introduction

	F05 - Orthogonalization
	F05 Chapter Introduction

	F06 - Linear Algebra Support Routines
	F06 Chapter Introduction

	F07 - Linear Equations (LAPACK)
	F07 Chapter Introduction

	F08 - Least Squares and Eigenvalue Problems (LAPACK)
	F08 Chapter Introduction

	F11 - Large Scale Linear Systems
	F11 Chapter Introduction

	F12 - Large Scale Eigenproblems
	F12 Chapter Introduction

	F16 - Further Linear Algebra Support Routines
	F16 Chapter Introduction

	G01 - Simple Calculations on Statistical Data
	G01 Chapter Introduction

	G02 - Correlation and Regression Analysis
	G02 Chapter Introduction

	G03 - Multivariate Methods
	G03 Chapter Introduction

	G04 - Analysis of Variance
	G04 Chapter Introduction

	G05 - Random Number Generators
	G05 Chapter Introduction

	G07 - Univariate Estimation
	G07 Chapter Introduction

	G08 - Nonparametric Statistics
	G08 Chapter Introduction

	G10 - Smoothing in Statistics
	G10 Chapter Introduction

	G11 - Contingency Table Analysis
	G11 Chapter Introduction

	G12 - Survival Analysis
	G12 Chapter Introduction

	G13 - Time Series Analysis
	G13 Chapter Introduction

	H - Operations Research
	H Chapter Introduction

	M01 - Sorting and Searching
	M01 Chapter Introduction

	S - Approximations of Special Functions
	S Chapter Introduction

	X01 - Mathematical Constants
	X01 Chapter Introduction

	X02 - Machine Constants
	X02 Chapter Introduction

	X03 - Inner Products
	X03 Chapter Introduction

	X04 - Input/Output Utilities
	X04 Chapter Introduction

	X05 - Date and Time Utilities
	X05 Chapter Introduction

	X06 - OpenMP Utilities
	X06 Chapter Introduction

	X07 - IEEE Arithmetic
	X07 Chapter Introduction




