
NAG Library Routine Document

E04MZF

Note: before using this routine, please read the Users’ Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

E04MZF reads data for a sparse linear programming or quadratic programming problem from an external
file which is in standard or compatible MPSX input format.

2 Specification

SUBROUTINE E04MZF (INFILE, MAXN, MAXM, MAXNNZ, XBLDEF, XBUDEF, MPSLST,
N, M, NNZ, IOBJ, NCOLH, A, HA, KA, BL, BU, START,
NAMES, NNAME, CRNAME, XS, ISTATE, IFAIL)

&
&

INTEGER INFILE, MAXN, MAXM, MAXNNZ, N, M, NNZ, IOBJ, NCOLH,
HA(MAXNNZ), KA(MAXN+1), NNAME, ISTATE(MAXN+MAXM),
IFAIL

&
&

REAL (KIND=nag_wp) XBLDEF, XBUDEF, A(MAXNNZ), BL(MAXN+MAXM),
BU(MAXN+MAXM), XS(MAXN+MAXM)

&

LOGICAL MPSLST
CHARACTER(1) START
CHARACTER(8) NAMES(5), CRNAME(MAXN+MAXM)

3 Description

E04MZF reads linear programming (LP) or quadratic programming (QP) problem data from an external
file which is prepared in standard or compatible MPSX (see IBM (1971)) input format and then
initializes n (the number of variables), m (the number of general linear constraints), the m by n matrix
A, and the vectors l, u and c (stored in row IOBJ of A) for use with E04NKF, which is designed to solve
problems of the form

minimize
x2Rn

cTxþ 1
2x

THx subject to l � x
Ax

� �
� u:

For LP problems, H ¼ 0. For QP problems, you must set NCOLH > 0 (see Section 5) and provide a
subroutine to E04NKF to compute Hx for any given vector x. (This is illustrated in Section 10.) The
optional parameter Maximize may be used to specify an alternative problem in which the objective
function is maximized (see Section 12.1 in E04NKF/E04NKA).

MPSX input format

The input file of data may only contain two types of lines:

1. Indicator lines (specifying the type of data which is to follow).

2. Data lines (specifying the actual data).

The input file must not contain any blank lines. Any characters beyond column 80 are ignored. Indicator
lines must not contain leading blank characters (in other words they must begin in column 1). The
following displays the order in which the indicator lines must appear in the file:

E04 – Minimizing or Maximizing a Function E04MZF

Mark 25 E04MZF.1

NAME user-supplied name
ROWS

data line(s)
COLUMNS

data line(s)
RHS

data line(s)
RANGES (optional)

data line(s)
BOUNDS (optional)

data line(s)
ENDATA

The ‘user-supplied name’ specifies a name for the problem and must occupy columns 15�22. The name
can either be blank or up to a maximum of 8 characters.

A data line follows the same fixed format made up of fields defined below. The contents of the fields
may have different significance depending upon the section of data in which they appear.

Field 1 Field 2 Field 3 Field 4 Field 5 Field 6
Columns 2�3 5�12 15�22 25�36 40�47 50�61
Contents Code Name Name Value Name Value

The names and codes consist of ‘alphanumeric’ characters (i.e., a–z, A–Z, 0–9, þ, �, *, blank (), :, $
or full stop (.) only) and the names must not contain leading blank characters. Values are read using
Fortran format E12:0. This allows values to be entered in several equivalent forms. For example,
1:2345678, 1:2345678Eþ 0, 123:45678E�2 and 12345678E�07 all represent the same number. It is
safest to include an explicit decimal point.

Note that in order to ensure numeric values are interpreted as intended, they should be right-justified in
the 12-character field, with no trailing blanks. This is because in some situations trailing blanks may be
interpreted as zeros and this can dramatically affect the interpretation of the value. This is relevant if the
value contains an exponent, or if it contains neither an exponent nor an explicit decimal point. For
example, the fields

%%%%1.23E-2%
%%%%%%%123%%

may be interpreted as 1:23E�20 and 12300 respectively (where % denotes a blank). The actual behaviour
is system-dependent.

Comment lines are allowed in the data file. These must have an asterisk (*) in column 1 and any
characters in columns 2–80. In any data line, a dollar sign ($) as the first character in Field 3 or 5
indicates that the information from that point through column 80 consists of comments.

Columns outside the six fields must be blank, except for columns 72–80, whose contents are ignored by
the routine. These columns may be used to enter a sequence number. A non-blank character outside the
predefined six fields and columns 72–80 is considered to be a major error (IFAIL ¼ 13; see Section 6),
unless it is part of a comment.

ROWS Data Lines

These lines specify row (constraint) names and their inequality types (i.e., ¼, � or �).

Field 1: defines the constraint type. It may be in column 2 or column 3.
N free row, that is no constraint. It may be used to define the objective row.
G greater than or equal to (i.e., �).
L less than or equal to (i.e., �).
E exactly equal to (i.e., ¼).
Field 2: defines the row name.

Row type N stands for ‘Not binding’, also known as ‘Free’. It can be used to define the objective row.
The objective row is a free row that specifies the vector c in the linear objective term cTx. It is taken to

E04MZF NAG Library Manual

E04MZF.2 Mark 25

be the first free row, unless some other free row name is specified by the NAMES array (see Section 5).
Note that c is assumed to be zero if (for example) the line

%N%%DUMMYROW

(where % denotes a blank) appears in the ROWS section of the MPSX data file, and the row name

DUMMYROW is omitted from the COLUMNS section.

COLUMNS Data Lines

These lines specify the names to be assigned to the variables (columns) in the general linear constraint
matrix A, and define, in terms of column vectors, the actual values of the corresponding matrix elements.

Field 1: blank (ignored).

Field 2: gives the name of the column associated with the elements specified in the following
fields.

Field 3: contains the name of a row.

Field 4: used in conjunction with Field 3 contains the value of the matrix element.

Field 5: is optional (may be used like Field 3).

Field 6: is optional (may be used like Field 4).

Note that only the nonzero elements of A and c need to be specified in the COLUMNS section, as any
zero elements of A are removed and any unspecified elements of c are assumed to be zero. In addition,
any nonzero elements in the jth column of A must be grouped together before those in the j þ 1ð Þth
column, for j ¼ 1; 2; . . . ; n� 1. Nonzero elements within a column may however appear in any order.

RHS Data Lines

This section specifies the right-hand side values of the general linear constraint matrix A (if any). The
lines specify the name to be given to the right-hand side (RHS) vector along with the numerical values
of the elements of the vector, which may appear in any order. The data lines have exactly the same
format as the COLUMNS data lines, except that the column name is replaced by the RHS name. Only
the nonzero elements need be specified. Note that this section may be empty, in which case the RHS
vector is assumed to be zero.

RANGES Data Lines (optional)

Ranges are used for constraints of the form l � Ax � u, where both l and u are finite. The range of the
constraint is r ¼ u� l. Either l or u must be specified in the RHS section and r must be defined in this
section. The data lines have exactly the same format as the COLUMNS data lines, except that the
column name is replaced by the RANGES name.

BOUNDS Data Lines (optional)

These lines specify limits on the values of the variables (l and u in l � x � u). If the variable is not
specified in the bound set then it is automatically assumed to lie between default lower and upper bounds
(usually 0 and þ1). Like an RHS column which is given a name, the set of variables in one bound set
is also given a name.

Field 1: specifies the type of bound or defines the variable type.
LO lower bound
UP upper bound
FX fixed variable
FR free variable (�1 to þ1)
MI lower bound is �1
PL upper bound is þ1. This is the default variable type.
Field 2: identifies a name for the bound set.
Field 3: identifies the column name of the variable belonging to this set.
Field 4: identifies the value of the bound; this has a numerical value only in association with LO, UP,

FX in Field 1, otherwise it is blank.
Field 5: is blank and ignored.
Field 6: is blank and ignored.

E04 – Minimizing or Maximizing a Function E04MZF

Mark 25 E04MZF.3

Note that if RANGES and BOUNDS sections are both present, the RANGES section must appear first.

4 References

IBM (1971) MPSX – Mathematical programming system Program Number 5734 XM4 IBM Trade
Corporation, New York

5 Parameters

1: INFILE – INTEGER Input

On entry: the unit number associated with the MPSX data file.

Constraint: 0 � INFILE � 99.

2: MAXN – INTEGER Input

On entry: an upper limit for the number of variables in the problem.

Constraint: MAXN � 1.

3: MAXM – INTEGER Input

On entry: an upper limit for the number of constraints (including the objective row) in the
problem.

Constraint: MAXM � 1.

4: MAXNNZ – INTEGER Input

On entry: an upper limit for the number of nonzeros (including the objective row) in the problem.

Constraint: MAXNNZ � 1.

5: XBLDEF – REAL (KIND=nag_wp) Input

On entry: the default lower bound to be used for the variables in the problem when none is
specified in the BOUNDS section of the MPSX data file. For a standard LP or QP problem
XBLDEF would normally be set to zero.

6: XBUDEF – REAL (KIND=nag_wp) Input

On entry: the default upper bound to be used for the variables in the problem when none is
specified in the BOUNDS section of the MPSX data file. For a standard LP or QP problem
XBUDEF would normally be set to ‘infinity’ (i.e., XBUDEF � 1020).

Constraint: XBUDEF � XBLDEF.

7: MPSLST – LOGICAL Input

On entry: if MPSLST ¼ :TRUE:, then a listing of the input data is sent to the current advisory
message unit (as defined by X04ABF). This can be useful for debugging the MPSX data file. If
MPSLST ¼ :FALSE:, then no listing is produced.

8: N – INTEGER Output

On exit: n, the actual number of variables in the problem.

9: M – INTEGER Output

On exit: m, the actual number of general linear constraints in the problem (including the objective
row).

E04MZF NAG Library Manual

E04MZF.4 Mark 25

10: NNZ – INTEGER Output

On exit: the actual number of nonzeros in the problem (including the objective row).

11: IOBJ – INTEGER Output

On exit: if IOBJ > 0, row IOBJ of A is a free row containing the nonzero coefficients of the
vector c.

If IOBJ ¼ 0, the coefficients of c are assumed to be zero.

If IOBJ ¼ �1, no such row was found and the routine terminates with IFAIL ¼ 4 or 5 (see
Section 6).

12: NCOLH – INTEGER Output

On exit: NCOLH ¼ 0. For QP problems, NCOLH is the number of leading nonzero columns of
the Hessian matrix H and must therefore be set > 0 before calling E04NKF.

13: AðMAXNNZÞ – REAL (KIND=nag_wp) array Output

On exit: the nonzero elements of A, ordered by increasing column index.

14: HAðMAXNNZÞ – INTEGER array Output

On exit: the row indices of the nonzero elements stored in A.

15: KAðMAXNþ 1Þ – INTEGER array Output

On exit: a set of pointers to the beginning of each column of A. More precisely, KAðiÞ contains
the index in A of the start of the ith column, for i ¼ 1; 2; . . . ;N. Note that KAð1Þ ¼ 1 and
KAðNþ 1Þ ¼ NNZþ 1.

16: BLðMAXNþMAXMÞ – REAL (KIND=nag_wp) array Output
17: BUðMAXNþMAXMÞ – REAL (KIND=nag_wp) array Output

On exit: BL contains the vector l (the lower bounds) and BU contains the vector u (the upper
bounds), for all the variables and constraints in the following order. The first N elements of each
array contain the bounds on the variables x and the next M elements contain the bounds for the
linear objective term cTx and the general linear constraints Ax (if any). Note that an ‘infinite’
lower bound is indicated by BLðjÞ ¼ �1:0Eþ 20, an ‘infinite’ upper bound by
BUðjÞ ¼ �1:0Eþ 20 and an equality constraint by BLðjÞ ¼ BUðjÞ. (The lower bound for cTx,
stored in BLðNþ IOBJÞ, is set to �XBUDEF. The corresponding upper bound, stored in
BUðNþ IOBJÞ, is set to XBUDEF.)

Note that E04MZF uses an ‘infinite’ bound size of 1020 in the definition of l and u. In other
words, any element of u greater than or equal to 1020 will be regarded as þ1 (and similarly any
element of l less than or equal to �1020 will be regarded as �1). If this value is deemed to be
‘inappropriate’, you are recommended to reset the value of the optional parameter Infinite Bound
Size and make any necessary changes to BL and/or BU before calling E04NKF.

18: START – CHARACTER(1) Output

On exit: START ¼ C and an internal Crash procedure will be used by E04NKF to choose an
initial basis.

19: NAMESð5Þ – CHARACTER(8) array Input/Output

On entry: a set of names associated with the MPSX form of the problem.

NAMESð1Þ
Must contain either the name of the problem or be blank.

E04 – Minimizing or Maximizing a Function E04MZF

Mark 25 E04MZF.5

NAMESð2Þ
Must contain either the name of the objective row or be blank (in which case the first
objective free row is used).

NAMESð3Þ
Must contain either the name of the RHS set to be used or be blank (in which case the first
RHS set is used).

NAMESð4Þ
Must contain either the name of the RANGE set to be used or be blank (in which case the
first RANGE set (if any) is used).

NAMESð5Þ
Must contain either the name of the BOUNDS set to be used or be blank (in which case the
first BOUNDS set (if any) is used).

On exit: a set of names associated with the problem as defined in the MPSX data file as follows:

NAMESð1Þ
Contains the name of the problem (or blank if none).

NAMESð2Þ
Contains the name of the objective row (or blank if none).

NAMESð3Þ
Contains the name of the RHS set (or blank if none).

NAMESð4Þ
Contains the name of the RANGE set (or blank if none).

NAMESð5Þ
Contains the name of the BOUNDS set (or blank if none).

20: NNAME – INTEGER Output

On exit: nþm, the total number of variables and constraints in the problem.

21: CRNAMEðMAXNþMAXMÞ – CHARACTER(8) array Output

On exit: the MPSX names of all the variables and constraints in the problem in the following
order. The first N elements contain the MPSX names for the variables and the next M elements
contain the MPSX names for the objective row and general linear constraints (if any). Note that
the MPSX name for the objective row is stored in CRNAMEðNþ IOBJÞ.

22: XSðMAXNþMAXMÞ – REAL (KIND=nag_wp) array Output

On exit: a set of initial values for the variables and constraints in the problem. More precisely,
XSðjÞ ¼ min max 0:0;BLðjÞð Þ;BUðjÞð Þ, for j ¼ 1; 2; . . . ;NNAME.

23: ISTATEðMAXNþMAXMÞ – INTEGER array Output

On exit: a set of initial states for the variables and constraints in the problem. More precisely,
ISTATEðjÞ ¼ 1 if XSðjÞ ¼ BUðjÞ and 0 otherwise, for j ¼ 1; 2; . . . ;NNAME.

24: IFAIL – INTEGER Input/Output

On entry: IFAIL must be set to 0, �1 or 1. If you are unfamiliar with this parameter you should
refer to Section 3.3 in the Essential Introduction for details.

For environments where it might be inappropriate to halt program execution when an error is
detected, the value �1 or 1 is recommended. If the output of error messages is undesirable, then
the value 1 is recommended. Otherwise, if you are not familiar with this parameter, the
recommended value is 0. When the value �1 or 1 is used it is essential to test the value of
IFAIL on exit.

E04MZF NAG Library Manual

E04MZF.6 Mark 25

On exit: IFAIL ¼ 0 unless the routine detects an error or a warning has been flagged (see
Section 6).

6 Error Indicators and Warnings

If on entry IFAIL ¼ 0 or �1, explanatory error messages are output on the current error message unit (as
defined by X04AAF).

Errors or warnings detected by the routine:

IFAIL ¼ 1

There are too many rows present in the data file. Increase MAXM by at least M �MAXMð Þ and
rerun E04MZF.

IFAIL ¼ 2

There are too many columns present in the data file. Increase MAXN by at least N�MAXNð Þ
and rerun E04MZF.

IFAIL ¼ 3

There are too many nonzeros present in the data file. Increase MAXNNZ by at least
NNZ�MAXNNZð Þ and rerun E04MZF.

IFAIL ¼ �99

An unexpected error has been triggered by this routine. Please contact NAG.

See Section 3.8 in the Essential Introduction for further information.

IFAIL ¼ �399

Your licence key may have expired or may not have been installed correctly.

See Section 3.7 in the Essential Introduction for further information.

IFAIL ¼ �999

Dynamic memory allocation failed.

See Section 3.6 in the Essential Introduction for further information.

The following error exits (apart from IFAIL ¼ 17) are caused by having either a corrupt or a
nonstandard MPSX data file. Refer to Section 3 for a detailed description of the MPSX format which can
be read by E04MZF. If MPSLST ¼ :TRUE:, the last line of printed output refers to the line in the MPSX
data file which contains the reported error.

IFAIL ¼ 4

The objective row was not found. There must be at least one row in the ROWS section with row
type N for the objective row.

IFAIL ¼ 5

An unknown objective row name was detected in the ROWS section.

IFAIL ¼ 6

There are no rows specified in the ROWS section.

IFAIL ¼ 7

An illegal constraint type was detected in the ROWS section. The constraint type must be either

N, L, G or E.

E04 – Minimizing or Maximizing a Function E04MZF

Mark 25 E04MZF.7

IFAIL ¼ 8

An illegal row name was detected in the ROWS section. Names must be made up of
‘alphanumeric’ characters (see Section 3) with no leading blanks.

IFAIL ¼ 9

An illegal column name was detected in the COLUMNS section. Names must be made up of
‘alphanumeric’ characters (see Section 3) with no leading blanks.

IFAIL ¼ 10

An illegal bound type was detected in the BOUNDS section. The bound type must be either LO,
UP, FX, FR, MI or PL.

IFAIL ¼ 11

An unknown column name was detected in the BOUNDS section. All the column names must be
specified in the COLUMNS section.

IFAIL ¼ 12

The last line in the data file does not contain the ENDATA line indicator.

IFAIL ¼ 13

An illegal data line was detected in the file. This line is neither a comment line nor a valid data
line.

IFAIL ¼ 14

An unknown row name was detected in COLUMNS, RHS or RANGES section. All the row
names must be specified in the ROWS section.

IFAIL ¼ 15

There were no columns specified in the COLUMNS section.

IFAIL ¼ 16

The name of the RHS, RANGES or BOUNDS set to be used was not found in the data file.

IFAIL ¼ 17

On entry, INFILE < 0,
or INFILE > 99,
or MAXN < 1,
or MAXM < 1,
or MAXNNZ < 1,
or XBLDEF > XBUDEF.

7 Accuracy

Not applicable.

8 Parallelism and Performance

Not applicable.

9 Further Comments

None.

E04MZF NAG Library Manual

E04MZF.8 Mark 25

10 Example

This example solves the quadratic programming problem

minimize cTxþ 1
2x

THx subject to l � Ax � u;
�2 � x � 2;

where

c ¼

�4:0
�1:0
�1:0
�1:0
�1:0
�1:0
�1:0
�0:1
�0:3

0
BBBBBBBBBB@

1
CCCCCCCCCCA
; H ¼

2 1 1 1 1 0 0 0 0
1 2 1 1 1 0 0 0 0
1 1 2 1 1 0 0 0 0
1 1 1 2 1 0 0 0 0
1 1 1 1 2 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0

0
BBBBBBBBBB@

1
CCCCCCCCCCA
; NCOLH ¼ 5;

A ¼
1:0 1:0 1:0 1:0 1:0 1:0 1:0 1:0 4:0
1:0 2:0 3:0 4:0 �2:0 1:0 1:0 1:0 1:0
1:0 �1:0 1:0 �1:0 1:0 1:0 1:0 1:0 1:0

0
@

1
A;

l ¼
�2:0
�2:0
�2:0

0
@

1
A and u ¼

1:5
1:5
4:0

0
@

1
A:

The optimal solution (to five figures) is

x� ¼ 2:0;�0:23333;�0:26667;�0:3;�0:1; 2:0; 2:0;�1:7777;�0:45555ð ÞT:

Three bound constraints and two general linear constraints are active at the solution. Note that, although
the Hessian matrix is positive semidefinite, the point x� is unique.

The MPSX representation of the problem is given in Section 10.2.

10.1 Program Text

! E04MZF Example Program Text
! Mark 25 Release. NAG Copyright 2014.

Module e04mzfe_mod

! E04MZF Example Program Module:
! Parameters and User-defined Routines

! .. Use Statements ..
Use nag_library, Only: nag_wp

! .. Implicit None Statement ..
Implicit None

! .. Accessibility Statements ..
Private
Public :: qphx

! .. Parameters ..
Real (Kind=nag_wp), Parameter, Public :: xbldef = 0.0_nag_wp
Real (Kind=nag_wp), Parameter, Public :: xbudef = 1.0E+20_nag_wp
Integer, Parameter, Public :: iset = 1, lencw = 600, &

leniw = 600, lenrw = 600, &
maxm = 10000, maxn = 10000, &
maxnnz = 100000, nindat = 7, &
nout = 6

Contains
Subroutine qphx(ncolh,x,hx,nstate,cuser,iuser,ruser)

E04 – Minimizing or Maximizing a Function E04MZF

Mark 25 E04MZF.9

! Routine to compute H*x. (In this version of QPHX, the Hessian
! matrix H is not referenced explicitly.)

! .. Scalar Arguments ..
Integer, Intent (In) :: ncolh, nstate

! .. Array Arguments ..
Real (Kind=nag_wp), Intent (Out) :: hx(ncolh)
Real (Kind=nag_wp), Intent (Inout) :: ruser(*)
Real (Kind=nag_wp), Intent (In) :: x(ncolh)
Integer, Intent (Inout) :: iuser(*)
Character (8), Intent (Inout) :: cuser(*)

! .. Executable Statements ..
If (nstate==1) Then

! First entry.

Write (nout,*)
Write (nout,99999) ncolh
Flush (nout)

End If

hx(1) = 2.0_nag_wp*x(1) + x(2) + x(3) + x(4) + x(5)
hx(2) = x(1) + 2.0_nag_wp*x(2) + x(3) + x(4) + x(5)
hx(3) = x(1) + x(2) + 2.0_nag_wp*x(3) + x(4) + x(5)
hx(4) = x(1) + x(2) + x(3) + 2.0_nag_wp*x(4) + x(5)
hx(5) = x(1) + x(2) + x(3) + x(4) + 2.0_nag_wp*x(5)

If (nstate>=2) Then

! Final entry.

Write (nout,*)
Write (nout,99998)
Flush (nout)

End If

Return

99999 Format (1X,’ This is the E04MZF example. NCOLH =’,I4,’.’)
99998 Format (1X,’ Finished the E04MZF example.’)

End Subroutine qphx
End Module e04mzfe_mod
Program e04mzfe

! E04MZF Example Main Program

! .. Use Statements ..
Use nag_library, Only: e04mzf, e04npf, e04nqf, e04ntf, nag_wp, x04abf, &

x04acf
Use e04mzfe_mod, Only: iset, lencw, leniw, lenrw, maxm, maxn, maxnnz, &

nindat, nout, qphx, xbldef, xbudef
! .. Implicit None Statement ..

Implicit None
! .. Parameters ..

Character (*), Parameter :: fname = ’e04mzfe.opt’
! .. Local Scalars ..

Real (Kind=nag_wp) :: obj, objadd, sinf
Integer :: ifail, infile, iobj, lenc, m, &

mode, n, ncolh, ninf, nname, &
nnz, ns, outchn

Logical :: mpslst
Character (8) :: prob
Character (1) :: start

! .. Local Arrays ..
Real (Kind=nag_wp), Allocatable :: a(:), bl(:), bu(:), c(:), pi(:), &

rc(:), xs(:)
Real (Kind=nag_wp) :: ruser(1), rw(lenrw)
Integer, Allocatable :: ha(:), helast(:), istate(:), ka(:)
Integer :: iuser(1), iw(leniw)
Character (8), Allocatable :: crname(:)
Character (8) :: cuser(1), cw(lencw), names(5)

E04MZF NAG Library Manual

E04MZF.10 Mark 25

! .. Intrinsic Procedures ..
Intrinsic :: max

! .. Executable Statements ..
Write (nout,99999) ’E04MZF Example Program Results’
Flush (nout)

Allocate (ha(maxnnz),ka(maxn+1),istate(maxn+maxm),a(maxnnz), &
bl(maxn+maxm),bu(maxn+maxm),xs(maxn+maxm),crname(maxn+maxm))

! Open the data file for reading

mode = 0

ifail = 0
Call x04acf(nindat,fname,mode,ifail)

! Initialize parameters.

infile = nindat
mpslst = .False.
names(1:5) = ’ ’

! Convert the MPSX data file for use by E04NQF.

ifail = 0
Call e04mzf(infile,maxn,maxm,maxnnz,xbldef,xbudef,mpslst,n,m,nnz,iobj, &

ncolh,a,ha,ka,bl,bu,start,names,nname,crname,xs,istate,ifail)

! Set the unit number for advisory messages to OUTCHN.

outchn = nout
Call x04abf(iset,outchn)

! Reset the value of NCOLH.

ncolh = 5

! Call E04NPF to initialise E04NQF.

ifail = 0
Call e04npf(cw,lencw,iw,leniw,rw,lenrw,ifail)

Call e04ntf(’Print file’,nout,cw,iw,rw,ifail)

! We have no explicit objective vector so set LENC = 0; the
! objective vector is stored in row IOBJ of A.

lenc = 0
Allocate (c(max(1,lenc)),helast(n+m),pi(m),rc(n+m))

objadd = 0.0_nag_wp
prob = ’ ’

! Do not allow any elastic variables (i.e. they cannot be
! infeasible).

helast(1:(n+m)) = 0

! Solve the QP problem.

ifail = 0
Call e04nqf(start,qphx,m,n,nnz,nname,lenc,ncolh,iobj,objadd,prob,a,ha, &

ka,bl,bu,c,crname,helast,istate,xs,pi,rc,ns,ninf,sinf,obj,cw,lencw,iw, &
leniw,rw,lenrw,cuser,iuser,ruser,ifail)

99999 Format (1X,A)
End Program e04mzfe

E04 – Minimizing or Maximizing a Function E04MZF

Mark 25 E04MZF.11

10.2 Program Data

Note: the MPSX data which is read by E04MZF begins with the second record of this data file; the first
record is a caption which is read by the example program.

NAME QP
ROWS
L ..ROW1..
L ..ROW2..
L ..ROW3..
N ..COST..

COLUMNS
...X1... ..ROW1.. 1.0 ..ROW2.. 1.0
...X1... ..ROW3.. 1.0 ..COST.. -4.0
...X2... ..ROW1.. 1.0 ..ROW2.. 2.0
...X2... ..ROW3.. -1.0 ..COST.. -1.0
...X3... ..ROW1.. 1.0 ..ROW2.. 3.0
...X3... ..ROW3.. 1.0 ..COST.. -1.0
...X4... ..ROW1.. 1.0 ..ROW2.. 4.0
...X4... ..ROW3.. -1.0 ..COST.. -1.0
...X5... ..ROW1.. 1.0 ..ROW2.. -2.0
...X5... ..ROW3.. 1.0 ..COST.. -1.0
...X6... ..ROW1.. 1.0 ..ROW2.. 1.0
...X6... ..ROW3.. 1.0 ..COST.. -1.0
...X7... ..ROW1.. 1.0 ..ROW2.. 1.0
...X7... ..ROW3.. 1.0 ..COST.. -1.0
...X8... ..ROW1.. 1.0 ..ROW2.. 1.0
...X8... ..ROW3.. 1.0 ..COST.. -0.1
...X9... ..ROW1.. 4.0 ..ROW2.. 1.0
...X9... ..ROW3.. 1.0 ..COST.. -0.3

RHS
RHS1 ..ROW1.. 1.5
RHS1 ..ROW2.. 1.5
RHS1 ..ROW3.. 4.0

RANGES
RANGE1 ..ROW1.. 3.5
RANGE1 ..ROW2.. 3.5
RANGE1 ..ROW3.. 6.0

BOUNDS
LO BOUND ...X1... -2.0
LO BOUND ...X2... -2.0
LO BOUND ...X3... -2.0
LO BOUND ...X4... -2.0
LO BOUND ...X5... -2.0
LO BOUND ...X6... -2.0
LO BOUND ...X7... -2.0
LO BOUND ...X8... -2.0
LO BOUND ...X9... -2.0
UP BOUND ...X1... 2.0
UP BOUND ...X2... 2.0
UP BOUND ...X3... 2.0
UP BOUND ...X4... 2.0
UP BOUND ...X5... 2.0
UP BOUND ...X6... 2.0
UP BOUND ...X7... 2.0
UP BOUND ...X8... 2.0
UP BOUND ...X9... 2.0

ENDATA

10.3 Program Results

E04MZF Example Program Results

Parameters

==========

Files

Solution file.......... 0 Old basis file 0 (Print file)........... 6

Insert file............ 0 New basis file 0 (Summary file)......... 0

E04MZF NAG Library Manual

E04MZF.12 Mark 25

Punch file............. 0 Backup basis file...... 0

Load file.............. 0 Dump file.............. 0

Frequencies

Print frequency........ 100 Check frequency........ 60 Save new basis map..... 100

Summary frequency...... 100 Factorization frequency 50 Expand frequency....... 10000

LP/QP Parameters

Minimize............... QPsolver Cholesky...... Cold start.............

Scale tolerance........ 0.900 Feasibility tolerance.. 1.00E-06 Iteration limit........ 10000

Scale option........... 2 Optimality tolerance... 1.00E-06 Print level............ 1

Crash tolerance........ 0.100 Pivot tolerance........ 2.04E-11 Partial price.......... 1

Crash option........... 3 Elastic weight......... 1.00E+00 Prtl price section (A) 9

Elastic mode........... 1 Elastic objective...... 1 Prtl price section (-I) 4

QP objective

Objective variables.... 5 Hessian columns........ 5 Superbasics limit...... 6

Nonlin Objective vars.. 5 Unbounded step size.... 1.00E+20

Linear Objective vars.. 0

Miscellaneous

LU factor tolerance.... 3.99 LU singularity tol..... 2.04E-11 Timing level........... 0

LU update tolerance.... 3.99 LU swap tolerance...... 1.03E-04 Debug level............ 0

LU partial pivoting... eps (machine precision) 1.11E-16 System information..... No

Matrix statistics

Total Normal Free Fixed Bounded

Rows 4 0 1 0 3

Columns 9 0 0 0 9

No. of matrix elements 36 Density 100.000

Biggest 4.0000E+00 (excluding fixed columns,

Smallest 1.0000E+00 free rows, and RHS)

No. of objective coefficients 9

Biggest 4.0000E+00 (excluding fixed columns)

Smallest 1.0000E-01

Nonlinear constraints 0 Linear constraints 4

Nonlinear variables 5 Linear variables 4

Jacobian variables 0 Objective variables 5

Total constraints 4 Total variables 9

This is the E04MZF example. NCOLH = 5.

Itn 0: Feasible linear constraints

E04NQT EXIT 0 -- finished successfully

E04NQT INFO 1 -- optimality conditions satisfied

Problem name

No. of iterations 11 Objective value -8.0677777778E+00

No. of Hessian products 25 Objective row -1.0785555556E+01

Quadratic objective 2.7177777778E+00

No. of superbasics 4 No. of basic nonlinears 2

No. of degenerate steps 2 Percentage 18.18

Max x (scaled) 1 1.3E+00 Max pi (scaled) 4 1.0E+00

Max x 1 2.0E+00 Max pi 4 1.0E+00

Max Prim inf(scaled) 0 0.0E+00 Max Dual inf(scaled) 5 2.2E-16

Max Primal infeas 0 0.0E+00 Max Dual infeas 5 1.6E-16

Name Objective Value -8.0677777778E+00

E04 – Minimizing or Maximizing a Function E04MZF

Mark 25 E04MZF.13

Status Optimal Soln Iteration 11 Superbasics 4

Section 1 - Rows

Number ...Row.. State ...Activity... Slack Activity ..Lower Limit. ..Upper Limit. .Dual Activity ..i

10 ..ROW1.. UL 1.50000 . -2.00000 1.50000 -0.06667 1

11 ..ROW2.. UL 1.50000 . -2.00000 1.50000 -0.03333 2

12 ..ROW3.. SBS 3.93333 -0.06667 -2.00000 4.00000 . 3

13 ..COST.. BS -10.78556 -10.78556 None None -1.0 4

Section 2 - Columns

Number .Column. State ...Activity... .Obj Gradient. ..Lower Limit. ..Upper Limit. Reduced Gradnt m+j

1 ...X1... UL 2.00000 -0.90000 -2.00000 2.00000 -0.80000 5

2 ...X2... SBS -0.23333 -0.13333 -2.00000 2.00000 . 6

3 ...X3... BS -0.26667 -0.16667 -2.00000 2.00000 . 7

4 ...X4... BS -0.30000 -0.20000 -2.00000 2.00000 0.00000 8

5 ...X5... SBS -0.10000 . -2.00000 2.00000 0.00000 9

6 ...X6... UL 2.00000 -1.0 -2.00000 2.00000 -0.90000 10

7 ...X7... UL 2.00000 -1.0 -2.00000 2.00000 -0.90000 11

8 ...X8... SBS -1.77778 -0.10000 -2.00000 2.00000 0.00000 12

9 ...X9... BS -0.45556 -0.30000 -2.00000 2.00000 0.00000 13

Finished the E04MZF example.

E04MZF NAG Library Manual

E04MZF.14 (last) Mark 25

	E04MZF
	1 Purpose
	2 Specification
	3 Description
	4 References
	IBM (1971)

	5 Parameters
	INFILE
	MAXN
	MAXM
	MAXNNZ
	XBLDEF
	XBUDEF
	MPSLST
	N
	M
	NNZ
	IOBJ
	NCOLH
	A
	HA
	KA
	BL
	BU
	START
	NAMES
	NNAME
	CRNAME
	XS
	ISTATE
	IFAIL

	6 Error Indicators and Warnings
	IFAIL=1
	IFAIL=2
	IFAIL=3
	IFAIL=-99
	IFAIL=-399
	IFAIL=-999
	IFAIL=4
	IFAIL=5
	IFAIL=6
	IFAIL=7
	IFAIL=8
	IFAIL=9
	IFAIL=10
	IFAIL=11
	IFAIL=12
	IFAIL=13
	IFAIL=14
	IFAIL=15
	IFAIL=16
	IFAIL=17

	7 Accuracy
	8 Parallelism and Performance
	9 Further Comments
	10 Example
	10.1 Program Text
	10.2 Program Data
	10.3 Program Results

	NAG Fortran Library Manual, Mark 25
	Copyright Statement
	Foreword
	Introduction
	Essential Introduction
	Mark 25 NAG Fortran Library News
	Multithreaded Routines
	Thread Safety
	Advice on Replacement Calls for Withdrawn/Superseded Routines
	Acknowledgements
	Online Documentation
	Index
	Implementation-specific Details for Users

	Chapters of the Library
	A00 - Library Identification
	A00 Chapter Introduction

	A02 - Complex Arithmetic
	A02 Chapter Introduction

	C02 - Zeros of Polynomials
	C02 Chapter Introduction

	C05 - Roots of One or More Transcendental Equations
	C05 Chapter Introduction

	C06 - Summation of Series
	C06 Chapter Introduction

	C09 - Wavelet Transforms
	C09 Chapter Introduction

	D01 - Quadrature
	D01 Chapter Introduction

	D02 - Ordinary Differential Equations
	D02 Chapter Introduction

	D03 - Partial Differential Equations
	D03 Chapter Introduction

	D04 - Numerical Differentiation
	D04 Chapter Introduction

	D05 - Integral Equations
	D05 Chapter Introduction

	D06 - Mesh Generation
	D06 Chapter Introduction

	E01 - Interpolation
	E01 Chapter Introduction

	E02 - Curve and Surface Fitting
	E02 Chapter Introduction

	E04 - Minimizing or Maximizing a Function
	E04 Chapter Introduction

	E05 - Global Optimization of a Function
	E05 Chapter Introduction

	F - Linear Algebra
	F Chapter Introduction

	F01 - Matrix Operations, Including Inversion
	F01 Chapter Introduction

	F02 - Eigenvalues and Eigenvectors
	F02 Chapter Introduction

	F03 - Determinants
	F03 Chapter Introduction

	F04 - Simultaneous Linear Equations
	F04 Chapter Introduction

	F05 - Orthogonalization
	F05 Chapter Introduction

	F06 - Linear Algebra Support Routines
	F06 Chapter Introduction

	F07 - Linear Equations (LAPACK)
	F07 Chapter Introduction

	F08 - Least Squares and Eigenvalue Problems (LAPACK)
	F08 Chapter Introduction

	F11 - Large Scale Linear Systems
	F11 Chapter Introduction

	F12 - Large Scale Eigenproblems
	F12 Chapter Introduction

	F16 - Further Linear Algebra Support Routines
	F16 Chapter Introduction

	G01 - Simple Calculations on Statistical Data
	G01 Chapter Introduction

	G02 - Correlation and Regression Analysis
	G02 Chapter Introduction

	G03 - Multivariate Methods
	G03 Chapter Introduction

	G04 - Analysis of Variance
	G04 Chapter Introduction

	G05 - Random Number Generators
	G05 Chapter Introduction

	G07 - Univariate Estimation
	G07 Chapter Introduction

	G08 - Nonparametric Statistics
	G08 Chapter Introduction

	G10 - Smoothing in Statistics
	G10 Chapter Introduction

	G11 - Contingency Table Analysis
	G11 Chapter Introduction

	G12 - Survival Analysis
	G12 Chapter Introduction

	G13 - Time Series Analysis
	G13 Chapter Introduction

	H - Operations Research
	H Chapter Introduction

	M01 - Sorting and Searching
	M01 Chapter Introduction

	S - Approximations of Special Functions
	S Chapter Introduction

	X01 - Mathematical Constants
	X01 Chapter Introduction

	X02 - Machine Constants
	X02 Chapter Introduction

	X03 - Inner Products
	X03 Chapter Introduction

	X04 - Input/Output Utilities
	X04 Chapter Introduction

	X05 - Date and Time Utilities
	X05 Chapter Introduction

	X06 - OpenMP Utilities
	X06 Chapter Introduction

	X07 - IEEE Arithmetic
	X07 Chapter Introduction

