NAG Library Routine Document
 F04YDF

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms and other implementation-dependent details.

1 Purpose

F04YDF estimates the 1-norm of a real rectangular matrix without accessing the matrix explicitly. It uses reverse communication for evaluating matrix products. The routine may be used for estimating condition numbers of square matrices.

2 Specification

```
SUBROUTINE FO4YDF (IREVCM, M, N, X, LDX, Y, LDY, ESTNRM, T, SEED, WORK, &
    IWORK, IFAIL)
INTEGER IREVCM, M, N, LDX, LDY, T, SEED, IWORK(2*N+5*T+20),
    IFAIL
REAL (KIND=nag_wp) X(LDX,*), Y(LDY,*), ESTNRM, WORK(M*T)
```


3 Description

F04YDF computes an estimate (a lower bound) for the 1-norm

$$
\begin{equation*}
\|A\|_{1}=\max _{1 \leq j \leq n} \sum_{i=1}^{m}\left|a_{i j}\right| \tag{1}
\end{equation*}
$$

of an m by n real matrix $A=\left(a_{i j}\right)$. The routine regards the matrix A as being defined by a usersupplied 'Black Box' which, given an $n \times t$ matrix X (with $t \ll n$) or an $m \times t$ matrix Y, can return $A X$ or $A^{\mathrm{T}} Y$. A reverse communication interface is used; thus control is returned to the calling program whenever a matrix product is required.

Note: this routine is not recommended for use when the elements of A are known explicitly; it is then more efficient to compute the 1-norm directly from formula (1) above.
The main use of the routine is for estimating $\left\|B^{-1}\right\|_{1}$ for a square matrix, B, and hence the condition number $\kappa_{1}(B)=\|B\|_{1}\left\|B^{-1}\right\|_{1}$, without forming B^{-1} explicitly ($A=B^{-1}$ above).
If, for example, an $L U$ factorization of B is available, the matrix products $B^{-1} X$ and $B^{-\mathrm{T}} Y$ required by F04YDF may be computed by back- and forward-substitutions, without computing B^{-1}.

The routine can also be used to estimate 1 -norms of matrix products such as $A^{-1} B$ and $A B C$, without forming the products explicitly. Further applications are described by Higham (1988).
Since $\|A\|_{\infty}=\left\|A^{\mathrm{T}}\right\|_{1}$, F04YDF can be used to estimate the ∞-norm of A by working with A^{T} instead of A.

The algorithm used is described in Higham and Tisseur (2000).

4 References

Higham N J (1988) FORTRAN codes for estimating the one-norm of a real or complex matrix, with applications to condition estimation ACM Trans. Math. Software 14 381-396
Higham N J and Tisseur F (2000) A block algorithm for matrix 1-norm estimation, with an application to 1-norm pseudospectra SIAM J. Matrix. Anal. Appl. 21 1185-1201

5 Parameters

Note: this routine uses reverse communication. Its use involves an initial entry, intermediate exits and re-entries, and a final exit, as indicated by the parameter IREVCM. Between intermediate exits and reentries, all parameters other than X and Y must remain unchanged.

1: IREVCM - INTEGER Input/Output
On initial entry: must be set to 0 .
On intermediate exit: IREVCM $=1$ or 2 , and X contains the $n \times t$ matrix X and Y contains the $m \times t$ matrix Y. The calling program must
(a) if IREVCM $=1$, evaluate $A X$ and store the result in Y or if $\operatorname{IREVCM}=2$, evaluate $A^{\mathrm{T}} Y$ and store the result in X ,
(b) call F04YDF once again, with all the other parameters unchanged.

On intermediate re-entry: IREVCM must be unchanged.
On final exit: $\operatorname{IREVCM}=0$.

2: M - INTEGER
On entry: the number of rows of the matrix A.
Constraint: $\mathrm{M} \geq 0$.
3: N - INTEGER Input
On entry: n, the number of columns of the matrix A.
Constraint: $\mathrm{N} \geq 0$.
4: $\quad \mathrm{X}(\mathrm{LDX}, *)-$ REAL (KIND=nag_wp) array
Input/Output
Note: the second dimension of the array X must be at least $\max (1, \mathrm{~T})$.
On initial entry: need not be set.
On intermediate exit: if IREVCM $=1$, contains the current matrix X.
On intermediate re-entry: if IREVCM $=2$, must contain $A^{\mathrm{T}} Y$.
On final exit: the array is undefined.

5: LDX - INTEGER
Input
On initial entry: the leading dimension of the array X as declared in the (sub)program from which F04YDF is called.

Constraint: $\mathrm{LDX} \geq \mathrm{N}$.

6: $\quad \mathrm{Y}(\mathrm{LDY}, *)-$ REAL (KIND=nag_wp) array
Input/Output
Note: the second dimension of the array Y must be at least $\max (1, \mathrm{~T})$.
On initial entry: need not be set.
On intermediate exit: if IREVCM $=2$, contains the current matrix Y.
On intermediate re-entry: if $\operatorname{IREVCM}=1$, must contain $A X$.
On final exit: the array is undefined.

7: LDY - INTEGER
Input
On initial entry: the leading dimension of the array Y as declared in the (sub)program from which F04YDF is called.
Constraint: LDY $\geq \mathrm{M}$.
8: \quad ESTNRM - REAL (KIND=nag_wp)
Input/Output
On initial entry: need not be set.
On intermediate re-entry: must not be changed.
On final exit: an estimate (a lower bound) for $\|A\|_{1}$.
9: $\quad \mathrm{T}$ - INTEGER
Input
On entry: the number of columns t of the matrices X and Y. This is a parameter that can be used to control the accuracy and reliability of the estimate and corresponds roughly to the number of columns of A that are visited during each iteration of the algorithm.
If $\mathrm{T} \geq 2$ then a partly random starting matrix is used in the algorithm.
Suggested value: $\mathrm{T}=2$.
Constraint: $1 \leq \mathrm{T} \leq \mathrm{M}$.
10: SEED - INTEGER Input
On entry: the seed used for random number generation.
If $T=1$, SEED is not used.
Constraint: if $\mathrm{T}>1, \mathrm{SEED} \geq 1$.
11: \quad WORK $(\mathrm{M} \times \mathrm{T})$ - REAL (KIND=nag_wp) array
Communication Array
12: $\operatorname{IWORK}(2 \times \mathrm{N}+5 \times \mathrm{T}+20)-$ INTEGER array
Communication Array
On initial entry: need not be set.
On intermediate re-entry: must not be changed.

13: IFAIL - INTEGER
Input/Output
On initial entry: IFAIL must be set to $0,-1$ or 1 . If you are unfamiliar with this parameter you should refer to Section 3.3 in the Essential Introduction for details.

For environments where it might be inappropriate to halt program execution when an error is detected, the value -1 or 1 is recommended. If the output of error messages is undesirable, then the value 1 is recommended. Otherwise, because for this routine the values of the output parameters may be useful even if IFAIL $\neq 0$ on exit, the recommended value is -1 . When the value -1 or 1 is used it is essential to test the value of IFAIL on exit.

On final exit: IFAIL $=0$ unless the routine detects an error or a warning has been flagged (see Section 6).

6 Error Indicators and Warnings

If on entry IFAIL $=0$ or -1 , explanatory error messages are output on the current error message unit (as defined by X04AAF).

Errors or warnings detected by the routine:
IFAIL $=1$
Internal error; please contact NAG.

IFAIL $=-1$
On entry, $\operatorname{IREVCM}=\langle$ value \rangle.
Constraint: $\operatorname{IREVCM}=0,1$ or 2.
On initial entry, IREVCM $=\langle$ value \rangle.
Constraint: $\operatorname{IREVCM}=0$.
IFAIL $=-2$
On entry, $\mathrm{M}=\langle$ value \rangle.
Constraint: $\mathrm{M} \geq 0$.
IFAIL $=-3$
On entry, $\mathrm{N}=\langle$ value \rangle.
Constraint: $\mathrm{N} \geq 0$.
IFAIL $=-5$
On entry, LDX $=\langle$ value \rangle and $\mathrm{N}=\langle$ value \rangle.
Constraint: LDX $\geq \mathrm{N}$.
IFAIL $=-7$
On entry, LDY $=\langle$ value \rangle and $\mathrm{M}=\langle$ value \rangle.
Constraint: LDY $\geq \mathrm{M}$.
IFAIL $=-9$
On entry, $\mathrm{M}=\langle$ value \rangle and $\mathrm{T}=\langle$ value \rangle.
Constraint: $1 \leq \mathrm{T} \leq \mathrm{M}$.
IFAIL $=-10$
On entry, $\mathrm{T}=\langle$ value \rangle and SEED $=\langle$ value \rangle.
Constraint: if $\mathrm{T}>1$, SEED ≥ 1.
IFAIL $=-99$
An unexpected error has been triggered by this routine. Please contact NAG.
See Section 3.8 in the Essential Introduction for further information.
IFAIL $=-399$
Your licence key may have expired or may not have been installed correctly.
See Section 3.7 in the Essential Introduction for further information.
IFAIL $=-999$
Dynamic memory allocation failed.
See Section 3.6 in the Essential Introduction for further information.

7 Accuracy

In extensive tests on random matrices of size up to $m=n=450$ the estimate ESTNRM has been found always to be within a factor two of $\|A\|_{1}$; often the estimate has many correct figures. However, matrices exist for which the estimate is smaller than $\|A\|_{1}$ by an arbitrary factor; such matrices are very unlikely to arise in practice. See Higham and Tisseur (2000) for further details.

8 Parallelism and Performance

F04YDF is threaded by NAG for parallel execution in multithreaded implementations of the NAG Library.

Please consult the X06 Chapter Introduction for information on how to control and interrogate the OpenMP environment used within this routine. Please also consult the Users' Note for your implementation for any additional implementation-specific information.

9 Further Comments

9.1 Timing

For most problems the time taken during calls to F04YDF will be negligible compared with the time spent evaluating matrix products between calls to F04YDF.

The number of matrix products required depends on the matrix A. At most six products of the form $Y=A X$ and five products of the form $X=A^{\mathrm{T}} Y$ will be required. The number of iterations is independent of the choice of t.

9.2 Overflow

It is your responsibility to guard against potential overflows during evaluation of the matrix products. In particular, when estimating $\left\|B^{-1}\right\|_{1}$ using a triangular factorization of B, F04YDF should not be called if one of the factors is exactly singular - otherwise division by zero may occur in the substitutions.

9.3 Choice of \boldsymbol{t}

The parameter t controls the accuracy and reliability of the estimate. For $t=1$, the algorithm behaves similarly to the LAPACK estimator xLACON. Increasing t typically improves the estimate, without increasing the number of iterations required.

For $t \geq 2$, random matrices are used in the algorithm, so for repeatable results the same value of SEED should be used each time.

A value of $t=2$ is recommended for new users.

9.4 Use in Conjunction with NAG Library Routines

To estimate the 1 -norm of the inverse of a matrix A, the following skeleton code can normally be used:

```
... code to factorize A ...
IF (A is not singular) THEN
    IREVCM = 0
    CALL FO4YDF (IREVCM,M,N,X,LDX,Y,LDY,ESTNRM,T,SEED,WORK, &
                                IWORK,IFAIL)
    IF (IREVCM.NE.0) THEN
        IF (IREVCM.EQ.1) THEN
                ... code to compute Y=inv(A)X ...
        ELSE
                ... code to compute X=inv(transpose(A))Y ...
        END IF
        GO TO 10
        END IF
END IF
```

To compute $A^{-1} X$ or $A^{-\mathrm{T}} Y$, solve the equation $A Y=X$ or $A^{\mathrm{T}} X=Y$, storing the result in Y or X respectively. The code will vary, depending on the type of the matrix A, and the NAG routine used to factorize A.

The factorization will normally have been performed by a suitable routine from Chapters F01, F03 or F07. Note also that many of the 'Black Box' routines in Chapter F04 for solving systems of equations also return a factorization of the matrix. The example program in Section 10 illustrates how F04YDF can be used in conjunction with NAG Library routines for $L U$ factorization of a real matrix F07ADF (DGETRF).

It is straightforward to use F04YDF for the following other types of matrix, using the named routines for factorization and solution:
nonsymmetric tridiagonal (F01LEF and F04LEF);
nonsymmetric almost block-diagonal (F01LHF and F04LHF);
nonsymmetric band (F07BDF (DGBTRF) and F07BEF (DGBTRS));
symmetric positive definite (F07FDF (DPOTRF) and F07FEF (DPOTRS));
symmetric positive definite band (F07HDF (DPBTRF) and F07HEF (DPBTRS));
symmetric positive definite tridiagonal (F07JAF (DPTSV), F07JDF (DPTTRF) and F07JEF (DPTTRS));
symmetric positive definite variable bandwidth (F01MCF and F04MCF);
symmetric positive definite sparse (F11JAF and F11JBF);
symmetric indefinite (F07PDF (DSPTRF) and F07PEF (DSPTRS));
nonsymmetric sparse (F11MEF and F11MFF; note that F11MGF can also be used here).
For upper or lower triangular matrices, no factorization routine is needed: $Y=A^{-1} X$ and $X=A^{-\mathrm{T}} Y$ may be computed by calls to F06PJF (DTRSV) (or F06PKF (DTBSV) if the matrix is banded, or F06PLF (DTPSV) if the matrix is stored in packed form).

10 Example

For this routine two examples are provided. There is a single example program for F04YDF, with a main program and the code to solve the two example problems is given in Example 1 (EX1) and Example 2 (EX2).

Example 1 (EX1)

This example estimates the condition number $\|A\|_{1}\left\|A^{-1}\right\|_{1}$ of the matrix A given by

$$
A=\left(\begin{array}{rrrrrr}
0.7 & -0.2 & 1.0 & 0.0 & 2.0 & 0.1 \\
0.3 & 0.7 & 0.0 & 1.0 & 0.9 & 0.2 \\
0.0 & 0.0 & 0.2 & 0.7 & 0.0 & -1.1 \\
0.0 & 3.4 & -0.7 & 0.2 & 0.1 & 0.1 \\
0.0 & -4.0 & 0.0 & 1.0 & 9.0 & 0.0 \\
0.4 & 1.2 & 4.3 & 0.0 & 6.2 & 5.9
\end{array}\right)
$$

Example 2 (EX2)

This example estimates the condition number of the sparse matrix A (stored in symmetric coordinate storage format) given by

$$
A=\left(\begin{array}{lllll}
0.0 & 0.0 & 0.0 & 1.0 & 0.0 \\
3.0 & 1.0 & 0.0 & 0.0 & 0.0 \\
0.0 & 2.0 & 0.0 & 2.0 & 0.0 \\
2.0 & 0.0 & 4.0 & 0.0 & 5.0 \\
0.0 & 1.0 & 2.0 & 0.0 & 0.0
\end{array}\right)
$$

10.1 Program Text

```
Program f04ydfe
    F04YDF Example Program Text
    Mark 25 Release. NAG Copyright 2014.
    .. Implicit None Statement ..
    Implicit None
    .. Parameters ..
    Integer, Parameter :: nout = 6
    .. Executable Statements ..
```

```
    Write (nout,*) 'FO4YDF Example Program Results'
    Call exl
    Call ex2
    Contains
    Subroutine ex1
    Read (nin,*)(a(i,1:n),i=1,m)
Compute 1-norm of A
nrma = f06raf('1',m,n,a,lda,work)
Write (nout,99999) 'The norm of A is: ', nrma
Estimate the norm of A^(-1) without explicitly forming A^(-1)
Perform an LU factorization so that A=LU where L and U are lower
and upper triangular.
ifail = O
The NAG name equivalent of dgetrf is f07adf
Call dgetrf(m,n,a,lda,ipiv,ifail)
seed = 354
irevcm = 0
loop: Do
            Call f04ydf(irevcm,m,n,x,ldx,y,ldy,nrminv,t,seed,work,iwork,ifail)
            If (irevcm==0) Then
                Exit loop
            Else If (irevcm==1) Then
                Compute y = inv(A)*x
                The NAG name equivalent of dgetrs is f07aef
                Call dgetrs('N',n,t,a,lda,ipiv,x,ldx,ifail)
                x was overwritten by dgetrs, so set y=x
                y(1:n,1:t) = x(1:n,1:t)
            Else
                Compute x = transpose(inv(A))*y
                The NAG name equivalent of dgetrs is f07aef
                Call dgetrs('T',n,t,a,lda,ipiv,y,ldy,ifail)
                y was overwritten by dgetrs so set x=y
                x(1:n,1:t) = y(1:n,1:t)
```

```
        End If
    End Do loop
    Write (nout,99999) 'The estimated norm of inverse(A) is: ', nrminv
    Compute and print the estimated condition number
    cond = nrminv*nrma
    Write (nout,*)
    Write (nout,99999) 'Estimated condition number of A: ', cond
    Write (nout,*)
9 9 9 9 9
    Format (1X,A,F6.2)
    End Subroutine ex1
    Subroutine ex2
    .. Use Statements ..
    Use nag_library, Only: f0lbrf, f04axf, f04ydf, nag_wp
    .. Implicit None Statement ..
    Implicit None
    .. Parameters ..
    Real (Kind=nag_wp), Parameter :: zero = 0.o_nag_wp
    .. Local Scalars ..
    Real (Kind=nag_wp) :: asum, cond, nrma, nrminv, pivot, &
    resid
    Integer :: i, ifail, irevcm, j, ldx, ldy, &
    licn, lirn, n, nin, nout, nz, &
    seed, t
    Logical :: grow, lblock
    Real (Kind=nag_wp), Allocatable :: a(:), w(:), work(:), x(:,:), y(:,:)
    Integer, Allocatable :: icn(:), ikeep(:), irn(:), iw(:), &
    iwork(:)
    Integer :: idisp(10)
    Logical :: abort(4)
    .. Intrinsic Procedures ..
    Intrinsic :: abs, max
    .. Executable Statements ..
    Continue
    nout = 6
    nin = 5
    Write (nout,'(//1X,A/)') 'Example 2'
    Skip heading in data file
    Read (nin,'(//A)')
    Input N, the order of the matrix A, and NZ the number of non-zero
    elements of A, together with t the norm estimation parameter.
    Read (nin,*) n, nz, t
    licn = 4*nz
    lirn = 2*nz
    ldx = n
    ldy = n
    Allocate the required memory
    Allocate (a(licn),icn(licn),irn(lirn),x(ldx,t),y(ldy,t),work(n*t), &
        ikeep (5*n),iwork(2*n+5*t+20),iw(8*n),w(n))
    Input the elements of A, along with row and column information.
    Read (nin,*)(a(i),irn(i),icn(i),i=1,nz)
    Compute 1-norm of A
    nrma = zero
    Do i = 1, n
        asum = zero
        Do j = 1, nz
            If (icn(j)==i) asum = asum + abs(a(j))
        End Do
        nrma = max(nrma,asum)
    End Do
```

```
Write (nout,99999) 'The norm of A is: ', nrma
Perform an LU factorization so that A=LU where L and U are lower
and upper triangular, using FO1BRF
pivot = 0.1_nag_wp
grow = .True.
lblock = .True.
abort(1) = .True.
abort(2) = .True.
abort(3) = .False.
abort(4) = .True.
ifail = 0
Call fOlbrf(n,nz,a,licn,irn,lirn,icn,pivot,ikeep,iw,w,lblock,grow, &
    abort,idisp,ifail)
! Compute an estimate of the 1-norm of inv(A)
seed = 412
irevcm = 0
loop: Do
    Call f04ydf(irevcm,n,n,x,ldx,y,ldy,nrminv,t,seed,work,iwork,ifail)
    If (irevcm==0) Then
                Exit loop
    Else If (irevcm==1) Then
                Compute y = inv(A)*x
                Do i = 1, t
                    Call f04axf(n,a,licn,icn,ikeep,x(1,i),w,irevcm,idisp,resid)
            End Do
                x was overwritten by f04axf, so set y=x
                y(1:n,1:t) = x(1:n,1:t)
            Else
                Compute x = transpose(inv(A))*y
                Do i = 1, t
                    Call f04axf(n,a,licn,icn,ikeep,y(1,i),w,irevcm,idisp,resid)
                End Do
                y was overwritten by f04axf so set x=y
                x(1:n,1:t) = y(1:n,1:t)
        End If
        End Do loop
        Write (nout,99999) 'The estimated norm of inverse(A) is: ', nrminv
        Compute and print the estimated condition number
        cond = nrminv*nrma
        Write (nout,*)
        Write (nout,99999) 'Estimated condition number of A: ', cond
        Write (nout,*)
9 9 9 9 9
Format (1X,A,F6.2)
    End Subroutine ex2
End Program f04ydfe
```


10.2 Program Data

FO4YDF Example Program Data
Example 1

6	6	2				:Values of M, N and t
0.7	-0.2	1.0	0.0	2.0	0.1	
0.3	0.7	0.0	1.0	0.9	0.2	
0.0	0.0	0.2	0.7	0.0	-1.1	
0.0	3.4	-0.7	0.2	0.1	0.1	
0.0	-4.0	0.0	1.0	9.0	0.0	
0.4	1.2	4.3	0.0	6.2	5.9	: End of matrix A

Example 2

5	10	2	:Values of $N, N Z$ and t	
3.0	2	1		
2.0	4	1		
1.0	2	2		
2.0	3	2		
1.0	5	2		
4.0	4	3		
2.0	5	3		End of matrix A
1.0	1	4		

10.3 Program Results

FO4YDF Example Program Results Example 1

The norm of A is: 18.20
The estimated norm of inverse(A) is: 2.97
Estimated condition number of A : 54.14

Example 2
The norm of A is: 6.00
The estimated norm of inverse(A) is: 3.37
Estimated condition number of A : 20.20

