NAG Library Routine Document

F06SGF (ZTBMV)

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of *bold italicised* terms and other implementation-dependent details.

1 Purpose

F06SGF (ZTBMV) computes the matrix-vector product for a complex triangular band matrix, its transpose or its conjugate transpose.

2 Specification

SUBROUTINE F06SGF (UPLO, TRANS, DIAG, N, K, A, LDA, X, INCX) INTEGER N, K, LDA, INCX COMPLEX (KIND=nag_wp) A(LDA,*), X(*) CHARACTER(1) UPLO, TRANS, DIAG

The routine may be called by its BLAS name ztbmv.

3 Description

F06SGF (ZTBMV) performs one of the matrix-vector operations

 $x \leftarrow Ax, \quad x \leftarrow A^{\mathsf{T}}x \quad \text{or} \quad x \leftarrow A^{\mathsf{H}}x,$

where A is an n by n complex triangular band matrix with k subdiagonals or superdiagonals, and x is an n-element complex vector.

4 References

None.

1:

5 Parameters

- UPLO CHARACTER(1)InputOn entry: specifies whether A is upper or lower triangular.UPLO = 'U'
A is upper triangular.UPLO = 'L'
A is lower triangular.Constraint: UPLO = 'U' or 'L'.
- 2: TRANS CHARACTER(1)

On entry: specifies the operation to be performed.

TRANS = 'N' $x \leftarrow Ax.$ TRANS = 'T' $x \leftarrow A^{T}x.$ TRANS = 'C' $x \leftarrow A^{H}x.$

Constraint: TRANS = 'N', 'T' or 'C'.

Input

3:	DIAG – CHARACTER(1)	nput
	On entry: specifies whether A has nonunit or unit diagonal elements.	
	DIAG = 'N' The diagonal elements are stored explicitly.	
	DIAG = 'U'	
	The diagonal elements are assumed to be 1, and are not referenced.	
	Constraint: $DIAG = 'N'$ or 'U'.	
4:	N – INTEGER	nput
	On entry: n, the order of the matrix A.	
	Constraint: $N \ge 0$.	
5:	K – INTEGER	nput
	On entry: k, the number of subdiagonals or superdiagonals of the matrix A.	
	Constraint: $K \ge 0$.	
6:	A(LDA,*) – COMPLEX (KIND=nag_wp) array	'nput
	Note: the second dimension of the array A must be at least N.	
	On entry: the n by n triangular band matrix A	
	The matrix is stored in rows 1 to $k + 1$, more precisely,	
	if UPLO = 'U', the elements of the upper triangle of A within the band must be stored element A_{ij} in $A(k+1+i-j,j)$ for $\max(1,j-k) \le i \le j$;	with
	if UPLO = 'L', the elements of the lower triangle of A within the band must be stored element A_{ij} in A $(1 + i - j, j)$ for $j \le i \le \min(n, j + k)$.	with
	If $DIAG = U'$, the diagonal elements of A are assumed to be 1, and are not referenced.	
7:	LDA – INTEGER	'nput
	<i>On entry</i> : the first dimension of the array A as declared in the (sub)program from which F06 (ZTBMV) is called.	SGF
	<i>Constraint</i> : $LDA \ge K + 1$.	
8:	X(*) – COMPLEX (KIND=nag_wp) array Input/On	ıtput
	Note: the dimension of the array X must be at least $max(1, 1 + (N - 1) \times INCX)$.	
	On entry: the vector x .	
	If INCX > 0, x_i must be stored in X(1 + (<i>i</i> -1) × INCX), for $i = 1, 2,, N$.	
	If INCX < 0, x_i must be stored in X(1-(N-i) × INCX), for $i = 1, 2,, N$.	
	On exit: the updated vector x stored in the array elements used to supply the original vector	r <i>x</i> .
9:	INCX – INTEGER	'nput
	On entry: the increment in the subscripts of X between successive elements of x .	
	Constraint: INCX $\neq 0$.	
6	Error Indicators and Warnings	

None.

7 Accuracy

Not applicable.

8 Parallelism and Performance

Not applicable.

9 Further Comments

None.

10 Example

None.