NAG Library Routine Document

 F06ZJF (ZTRSM)

 F06ZJF (ZTRSM)}

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms and other implementation-dependent details.

1 Purpose

F06ZJF (ZTRSM) performs one of the matrix-matrix operations

$$
\begin{array}{ll}
B \leftarrow \alpha A^{-1} B, & B \leftarrow \alpha A^{-\mathrm{T}} B,
\end{array} \quad B \leftarrow \alpha A^{-\mathrm{H}} B, \quad \text { or } \quad B \leftarrow \alpha B A^{-\mathrm{H}},
$$

where A is a complex triangular matrix, B is an m by n complex matrix, and α is a complex scalar. $A^{-\mathrm{T}}$ denotes $\left(A^{\mathrm{T}}\right)^{-1}$ or equivalently $\left(A^{-1}\right)^{\mathrm{T}} ; A^{-\mathrm{H}}$ denotes $\left(A^{\mathrm{H}}\right)^{-1}$ or equivalently $\left(A^{-1}\right)^{\mathrm{H}}$.
No test for singularity or near-singularity of A is included in this routine. Such tests must be performed before calling this routine.

2 Specification

```
SUBROUTINE FO6ZJF (SIDE, UPLO, TRANSA, DIAG, M, N, ALPHA, A, LDA, B,
        LDB )
INTEGER M, N, LDA, LDB
COMPLEX (KIND=nag_wp) ALPHA, A(LDA,*), B (LDB **)
CHARACTER(1) SIDE, UPLO, TRANSA, DIAG
```

The routine may be called by its BLAS name ztrsm.

3 Description

None.

4 References

None.

5 Parameters

1: SIDE - CHARACTER(1) Input
On entry: specifies whether B is operated on from the left or the right.
SIDE $=$ 'L'
B is pre-multiplied from the left.
SIDE $=$ ' R^{\prime}
B is post-multiplied from the right.
Constraint: SIDE $=$ 'L' or 'R'.
2: UPLO - CHARACTER(1) Input
On entry: specifies whether A is upper or lower triangular.
$\mathrm{UPLO}=$ ' U '
A is upper triangular.
$\mathrm{UPLO}=$ 'L'
A is lower triangular.
Constraint: UPLO $=$ ' U ' or 'L'.
3: TRANSA - CHARACTER(1)
Input
On entry: specifies whether the operation involves $A^{-1}, A^{-\mathrm{T}}$ or $A^{-\mathrm{H}}$.
TRANSA = ' N '
The operation involves A^{-1}.
TRANSA $={ }^{\prime} \mathrm{T}^{\prime}$
The operation involves $A^{-\mathrm{T}}$.
TRANSA $={ }^{\prime} C^{\prime}$
The operation involves $A^{-\mathrm{H}}$.
Constraint: TRANSA $=$ ' N ', ' T ' or ' C '.
4: DIAG - CHARACTER(1)
Input
On entry: specifies whether A has nonunit or unit diagonal elements.
DIAG $=$ ' N '
The diagonal elements are stored explicitly.
DIAG $=$ ' U^{\prime}
The diagonal elements are assumed to be 1 , and are not referenced.
Constraint: DIAG $=$ ' N ' or ' U '.
5: M - INTEGER
Input
On entry: m, the number of rows of the matrix B; the order of A if $\operatorname{SIDE}=$ ' L '.
Constraint: $\mathrm{M} \geq 0$.
6: $\quad \mathrm{N}$ - INTEGER
Input
On entry: n, the number of columns of the matrix B; the order of A if $\operatorname{SIDE}=$ ' R .
Constraint: $\mathrm{N} \geq 0$.
7: ALPHA - COMPLEX (KIND=nag_wp)
On entry: the scalar α.
A(LDA, *) - COMPLEX (KIND=nag_wp) array
Input
Note: the second dimension of the array A must be at least $\max (1, \mathrm{M})$ if $\operatorname{SIDE}=$ ' L ' and at least $\max (1, \mathrm{~N})$ if $\operatorname{SIDE}=$ ' R '.
On entry: the triangular matrix A; A is m by m if $\operatorname{SIDE}=$ ' L ', or n by n if $\operatorname{SIDE}=$ ' R '.
If UPLO $=$ ' U ', A is upper triangular and the elements of the array below the diagonal are not referenced.
If UPLO $=$ 'L', A is lower triangular and the elements of the array above the diagonal are not referenced.
If DIAG $=$ ' U ', the diagonal elements of A are assumed to be 1 , and are not referenced.

On entry: the first dimension of the array A as declared in the (sub)program from which F06ZJF (ZTRSM) is called.

Constraints:

$$
\begin{aligned}
& \text { if SIDE }=\text { 'L', LDA } \geq \max (1, M) \text {; } \\
& \text { if } \operatorname{SIDE}=\text { 'R', LDA } \geq \max (1, \mathrm{~N})
\end{aligned}
$$

10: $\mathrm{B}(\mathrm{LDB}, *)$ - COMPLEX (KIND=nag_wp) array Input/Output
Note: the second dimension of the array B must be at least $\max (1, N)$.
On entry: the m by n matrix B.
If $\mathrm{ALPHA}=0$, B need not be set.
On exit: the updated matrix B.
11: LDB - INTEGER
Input
On entry: the first dimension of the array B as declared in the (sub)program from which F06ZJF (ZTRSM) is called.
Constraint: $\mathrm{LDB} \geq \max (1, \mathrm{M})$.

6 Error Indicators and Warnings

None.

7 Accuracy

Not applicable.

8 Parallelism and Performance

F06ZJF (ZTRSM) is threaded by NAG for parallel execution in multithreaded implementations of the NAG Library.

F06ZJF (ZTRSM) makes calls to BLAS and/or LAPACK routines, which may be threaded within the vendor library used by this implementation. Consult the documentation for the vendor library for further information.
Please consult the X06 Chapter Introduction for information on how to control and interrogate the OpenMP environment used within this routine. Please also consult the Users' Note for your implementation for any additional implementation-specific information.

9 Further Comments

None.

10 Example

None.

