NAG Library Routine Document
 F08SEF (DSYGST)

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms and other implementation-dependent details.

1 Purpose

F08SEF (DSYGST) reduces a real symmetric-definite generalized eigenproblem $A z=\lambda B z, A B z=\lambda z$ or $B A z=\lambda z$ to the standard form $C y=\lambda y$, where A is a real symmetric matrix and B has been factorized by F07FDF (DPOTRF).

2 Specification

```
SUBROUTINE FO8SEF (ITYPE, UPLO, N, A, LDA, B, LDB, INFO)
INTEGER ITYPE, N, LDA, LDB, INFO
REAL (KIND=nag_wp) A(LDA,*), B (LDB,*)
CHARACTER(1) UPLO
```

The routine may be called by its LAPACK name dsygst.

3 Description

To reduce the real symmetric-definite generalized eigenproblem $A z=\lambda B z, A B z=\lambda z$ or $B A z=\lambda z$ to the standard form $C y=\lambda y$, F08SEF (DSYGST) must be preceded by a call to F07FDF (DPOTRF) which computes the Cholesky factorization of $B ; B$ must be positive definite.
The different problem types are specified by the parameter ITYPE, as indicated in the table below. The table shows how C is computed by the routine, and also how the eigenvectors z of the original problem can be recovered from the eigenvectors of the standard form.

ITYPE	Problem	UPLO	B	C	z
1	$A z=\lambda B z$	'U' 'L'	$U^{\mathrm{T}} U$ $L L^{\mathrm{T}}$	$U^{-\mathrm{T}} A U^{-1}$ $L^{-1} A L^{-\mathrm{T}}$	$U^{-1} y$ $L^{-\mathrm{T}} y$
2	$A B z=\lambda z$	'U' $' \mathrm{~L}$	$U^{\mathrm{T}} U$ $L L^{\mathrm{T}}$	$U A U^{\mathrm{T}}$ $L^{\mathrm{T}} A L$	$U^{-1} y$ $L^{-\mathrm{T}} y$
3	$B A z=\lambda z$	'U' 'L'	$U^{\mathrm{T}} U$ $L L^{\mathrm{T}}$	$U A U^{\mathrm{T}}$ $L^{\mathrm{T}} A L$	$U^{\mathrm{T}} y$ $L y$

4 References

Golub G H and Van Loan C F (1996) Matrix Computations (3rd Edition) Johns Hopkins University Press, Baltimore

5 Parameters

1: ITYPE - INTEGER
On entry: indicates how the standard form is computed.
ITYPE $=1$

$$
\begin{aligned}
& \text { if UPLO }=\text { 'U', } C=U^{-\mathrm{T}} A U^{-1} \\
& \text { if UPLO }=\text { 'L', } C=L^{-1} A L^{-\mathrm{T}}
\end{aligned}
$$

ITYPE $=2$ or 3

$$
\begin{aligned}
& \text { if } \mathrm{UPLO}=\mathrm{'}^{\prime}, C=U A U^{\mathrm{T}} \\
& \text { if } \mathrm{UPLO}=' \mathrm{~L} ', C=L^{\mathrm{T}} A L
\end{aligned}
$$

Constraint: ITYPE $=1,2$ or 3 .
2: UPLO - CHARACTER(1)
On entry: indicates whether the upper or lower triangular part of A is stored and how B has been factorized.
$\mathrm{UPLO}=$ ' U '
The upper triangular part of A is stored and $B=U^{\mathrm{T}} U$.
$\mathrm{UPLO}=$ ' L '
The lower triangular part of A is stored and $B=L L^{\mathrm{T}}$.
Constraint: UPLO = 'U' or 'L'.
3: N - INTEGER
Input
On entry: n, the order of the matrices A and B.
Constraint: $\mathrm{N} \geq 0$.
$\mathrm{A}(\mathrm{LDA}, *)$ - REAL (KIND=nag_wp) array
Input/Output
Note: the second dimension of the array A must be at least $\max (1, N)$.
On entry: the n by n symmetric matrix A.
If UPLO $=$ ' U ', the upper triangular part of A must be stored and the elements of the array below the diagonal are not referenced.

If UPLO $=$ 'L', the lower triangular part of A must be stored and the elements of the array above the diagonal are not referenced.
On exit: the upper or lower triangle of A is overwritten by the corresponding upper or lower triangle of C as specified by ITYPE and UPLO.

5: LDA - INTEGER
Input
On entry: the first dimension of the array A as declared in the (sub)program from which F08SEF (DSYGST) is called.
Constraint: $\mathrm{LDA} \geq \max (1, \mathrm{~N})$.
$\mathrm{B}(\mathrm{LDB}, *)$ - REAL (KIND=nag_wp) array
Input
Note: the second dimension of the array B must be at least $\max (1, N)$.
On entry: the Cholesky factor of B as specified by UPLO and returned by F07FDF (DPOTRF).

7: LDB - INTEGER Input
On entry: the first dimension of the array B as declared in the (sub)program from which F08SEF (DSYGST) is called.
Constraint: $\operatorname{LDB} \geq \max (1, \mathrm{~N})$.
8: INFO - INTEGER Output
On exit: $\mathrm{INFO}=0$ unless the routine detects an error (see Section 6).

6 Error Indicators and Warnings

INFO <0
If INFO $=-i$, argument i had an illegal value. An explanatory message is output, and execution of the program is terminated.

7 Accuracy

Forming the reduced matrix C is a stable procedure. However it involves implicit multiplication by B^{-1} (if ITYPE $=1$) or $B($ if ITYPE $=2$ or 3$)$. When F08SEF (DSYGST) is used as a step in the computation of eigenvalues and eigenvectors of the original problem, there may be a significant loss of accuracy if B is ill-conditioned with respect to inversion. See the document for F08SAF (DSYGV) for further details.

8 Parallelism and Performance

F08SEF (DSYGST) is not threaded by NAG in any implementation.
F08SEF (DSYGST) makes calls to BLAS and/or LAPACK routines, which may be threaded within the vendor library used by this implementation. Consult the documentation for the vendor library for further information.

Please consult the X06 Chapter Introduction for information on how to control and interrogate the OpenMP environment used within this routine. Please also consult the Users' Note for your implementation for any additional implementation-specific information.

9 Further Comments

The total number of floating-point operations is approximately n^{3}.
The complex analogue of this routine is F08SSF (ZHEGST).

10 Example

This example computes all the eigenvalues of $A z=\lambda B z$, where

$$
A=\left(\begin{array}{rrrr}
0.24 & 0.39 & 0.42 & -0.16 \\
0.39 & -0.11 & 0.79 & 0.63 \\
0.42 & 0.79 & -0.25 & 0.48 \\
-0.16 & 0.63 & 0.48 & -0.03
\end{array}\right) \quad \text { and } \quad B=\left(\begin{array}{rrrr}
4.16 & -3.12 & 0.56 & -0.10 \\
-3.12 & 5.03 & -0.83 & 1.09 \\
0.56 & -0.83 & 0.76 & 0.34 \\
-0.10 & 1.09 & 0.34 & 1.18
\end{array}\right)
$$

Here B is symmetric positive definite and must first be factorized by F07FDF (DPOTRF). The program calls F08SEF (DSYGST) to reduce the problem to the standard form $C y=\lambda y$; then F08FEF (DSYTRD) to reduce C to tridiagonal form, and F08JFF (DSTERF) to compute the eigenvalues.

10.1 Program Text

Program f08sefe
$!$

F08SEF Example Program Text
Mark 25 Release. NAG Copyright 2014.
.. Use Statements ..
Use nag_library, Only: dpotrf, dsterf, dsygst, dsytrd, nag_wp
.. Implicit None Statement ..
Implicit None
.. Parameters ..
Integer, Parameter : \quad nin $=5$, nout $=6$
.. Local Scalars ..
Integer
:: i, info, lda, ldb, lwork, n
Character (1) : : uplo
.. Local Arrays ..
Real (Kind=nag_wp), Allocatable : : $\mathrm{a}(:, \mathrm{:}), \mathrm{b}(:,:), \mathrm{d}(:), \mathrm{e}(:), \mathrm{tau}(:), \mathrm{d}$
work(:)
.. Executable Statements ..
Write (nout,*) 'FO8SEF Example Program Results'
Skip heading in data file
Read (nin,*)
Read (nin,*) n
lda $=$ n
$1 \mathrm{db}=\mathrm{n}$
lwork $=64 * n$
Allocate $(a(l d a, n), b(l d b, n), d(n), e(n-1), t a u(n)$, work(lwork))
Read A and B from data file
Read (nin,*) uplo
If (uplo=='U') Then
Read (nin,*) (a(i,i:n), i=1,n)
Read (nin,*) (b(i,i:n), i=1,n)
Else If (uplo=='L') Then
Read (nin,*) (a(i, 1:i), i=1,n)
Read (nin,*) (b(i,1:i), $i=1, n)$
End If
Compute the Cholesky factorization of B
The NAG name equivalent of dpotrf is f07fdf Call dpotrf(uplo,n,b,ldb,info)

Write (nout,*)
If (info>0) Then
Write (nout,*) 'B is not positive definite.'
Else

```
    Reduce the problem to standard form C*y = lambda*y, storing
    the result in A
    The NAG name equivalent of dsygst is f08sef
    Call dsygst(1,uplo,n,a,lda,b,ldb,info)
    Reduce C to tridiagonal form T = (Q**T)*C*Q
    The NAG name equivalent of dsytrd is f08fef
    Call dsytrd(uplo,n,a,lda,d,e,tau,work,lwork,info)
    Calculate the eigenvalues of T (same as C)
    The NAG name equivalent of dsterf is fO8jff
    Call dsterf(n,d,e,info)
    If (info>0) Then
        Write (nout,*) 'Failure to converge.'
    Else
            Print eigenvalues
            Write (nout,*) 'Eigenvalues'
            Write (nout,99999) d(1:n)
```

```
            End If
            End If
99999 Format (3X,(9F8.4))
    End Program f08sefe
```


10.2 Program Data

10.3 Program Results

```
FO8SEF Example Program Results
Eigenvalues
    -2.2254 -0.4548 0.1001 1.1270
```

