NAG Library Routine Document
 F08WSF (ZGGHRD)

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms and other implementation-dependent details.

1 Purpose

F08WSF (ZGGHRD) reduces a pair of complex matrices (A, B), where B is upper triangular, to the generalized upper Hessenberg form using unitary transformations.

2 Specification

SUBROUTINE FO8WSF (COMPQ, COMPZ, N, ILO, IHI, A, LDA, B, LDB, $2, L D Q, ~ Z, ~ \&$ LDZ, INFO)

```
INTEGER N, ILO, IHI, LDA, LDB, LDQ, LDZ, INFO
COMPLEX (KIND=nag_wp) A(LDA,*), B(LDB,*), Q(LDQ,*), Z(LDZ,*)
CHARACTER(1) COMPQ, COMPZ
```

The routine may be called by its LAPACK name zgghrd.

3 Description

F08WSF (ZGGHRD) is usually the third step in the solution of the complex generalized eigenvalue problem

$$
A x=\lambda B x
$$

The (optional) first step balances the two matrices using F08WVF (ZGGBAL). In the second step, matrix B is reduced to upper triangular form using the $Q R$ factorization routine F08ASF (ZGEQRF) and this unitary transformation Q is applied to matrix A by calling F08AUF (ZUNMQR).
F08WSF (ZGGHRD) reduces a pair of complex matrices (A, B), where B is triangular, to the generalized upper Hessenberg form using unitary transformations. This two-sided transformation is of the form

$$
\begin{aligned}
Q^{\mathrm{H}} A Z & =H \\
Q^{\mathrm{H}} B Z & =T
\end{aligned}
$$

where H is an upper Hessenberg matrix, T is an upper triangular matrix and Q and Z are unitary matrices determined as products of Givens rotations. They may either be formed explicitly, or they may be postmultiplied into input matrices Q_{1} and Z_{1}, so that

$$
\begin{aligned}
Q_{1} A Z_{1}^{\mathrm{H}} & =\left(Q_{1} Q\right) H\left(Z_{1} Z\right)^{\mathrm{H}}, \\
Q_{1} B Z_{1}^{\mathrm{H}} & =\left(Q_{1} Q\right) T\left(Z_{1} Z\right)^{\mathrm{H}} .
\end{aligned}
$$

4 References

Golub G H and Van Loan C F (1996) Matrix Computations (3rd Edition) Johns Hopkins University Press, Baltimore

Moler C B and Stewart G W (1973) An algorithm for generalized matrix eigenproblems SIAM J. Numer. Anal. 10 241-256

5 Parameters

1: COMPQ - CHARACTER(1)
Input
On entry: specifies the form of the computed unitary matrix Q.
COMPQ $=$ ' N^{\prime}
Do not compute Q.
COMPQ = 'I'
The unitary matrix Q is returned.
COMPQ $=$ ' V^{\prime}
Q must contain a unitary matrix Q_{1}, and the product $Q_{1} Q$ is returned.
Constraint: COMPQ $=$ ' N ', 'I' or 'V'.
2: COMPZ - CHARACTER(1)
Input
On entry: specifies the form of the computed unitary matrix Z.
COMPZ $=$ ' N^{\prime}
Do not compute Z.
COMPZ $={ }^{\prime} \mathrm{V}^{\prime}$
Z must contain a unitary matrix Z_{1}, and the product $Z_{1} Z$ is returned.
COMPZ = 'I'
The unitary matrix Z is returned.
Constraint: COMPZ $=$ ' N ', 'V' or 'I'.
3: $\quad \mathrm{N}$ - INTEGER
Input
On entry: n, the order of the matrices A and B.
Constraint: $\mathrm{N} \geq 0$.
ILO - INTEGER Input
IHI - INTEGER Input
On entry: i_{lo} and $i_{\text {hi }}$ as determined by a previous call to F08WVF (ZGGBAL). Otherwise, they should be set to 1 and n, respectively.

Constraints:

$$
\begin{aligned}
& \text { if } \mathrm{N}>0,1 \leq \mathrm{ILO} \leq \mathrm{IHI} \leq \mathrm{N} \\
& \text { if } \mathrm{N}=0, \mathrm{ILO}=1 \text { and } \mathrm{IHI}=0
\end{aligned}
$$

6: $\mathrm{A}(\mathrm{LDA}, *)$ - COMPLEX (KIND=nag_wp) array
Input/Output
Note: the second dimension of the array A must be at least $\max (1, \mathrm{~N})$.
On entry: the matrix A of the matrix pair (A, B). Usually, this is the matrix A returned by F08AUF (ZUNMQR).

On exit: A is overwritten by the upper Hessenberg matrix H.
7: LDA - INTEGER
Input
On entry: the first dimension of the array A as declared in the (sub)program from which F08WSF (ZGGHRD) is called.
Constraint: $\mathrm{LDA} \geq \max (1, \mathrm{~N})$.

8: $\quad \mathrm{B}(\mathrm{LDB}, *)-\mathrm{COMPLEX}(\mathrm{KIND}=$ nag_wp $)$ array
Input/Output
Note: the second dimension of the array B must be at least $\max (1, \mathrm{~N})$.
On entry: the upper triangular matrix B of the matrix pair (A, B). Usually, this is the matrix B returned by the $Q R$ factorization routine F08ASF (ZGEQRF).

On exit: B is overwritten by the upper triangular matrix T.
9: LDB - INTEGER
Input
On entry: the first dimension of the array B as declared in the (sub)program from which F08WSF (ZGGHRD) is called.

Constraint: $\operatorname{LDB} \geq \max (1, \mathrm{~N})$.
10: $\quad \mathrm{Q}(\mathrm{LDQ}, *)$ - COMPLEX (KIND=nag_wp) array
Input/Output
Note: the second dimension of the array Q must be at least $\max (1, \mathrm{~N})$ if $\mathrm{COMPQ}=$ ' I ' or ' V ' and at least 1 if COMPQ $=$ ' N '.
On entry: if COMPQ $=$ ' $\mathrm{V}^{\prime}, \mathrm{Q}$ must contain a unitary matrix Q_{1}.
If COMPQ $=$ ' N ', Q is not referenced.
On exit: if COMPQ = 'I', Q contains the unitary matrix Q.
Iif COMPQ $=$ ' V ', Q is overwritten by $Q_{1} Q$.
11: LDQ - INTEGER
Input
On entry: the first dimension of the array Q as declared in the (sub)program from which F08WSF (ZGGHRD) is called.
Constraints:

> if COMPQ $=$ 'I' or 'V', LDQ $\geq \max (1, \mathrm{~N})$;
> if COMPQ $=$ 'N', LDQ ≥ 1

12: $\quad \mathrm{Z}(\mathrm{LDZ}, *)$ - COMPLEX (KIND=nag_wp) array
Input/Output
Note: the second dimension of the array Z must be at least $\max (1, \mathrm{~N})$ if $\mathrm{COMPZ}=$ ' V ' or 'I' and at least 1 if COMPZ $=$ ' N '.

On entry: if COMPZ $=$ ' V^{\prime}, Z must contain a unitary matrix Z_{1}.
If COMPZ $=$ ' N ', Z is not referenced.
On exit: if COMPZ = 'I', Z contains the unitary matrix Z.
If COMPZ $=$ ' $\mathrm{V}^{\prime}, \mathrm{Z}$ is overwritten by $Z_{1} Z$.
13: LDZ - INTEGER
Input
On entry: the first dimension of the array Z as declared in the (sub)program from which F08WSF (ZGGHRD) is called.
Constraints:

```
if COMPZ = 'V' or 'I', LDZ \geq max(1,N);
if COMPZ = 'N', LDZ \geq1.
```

14: INFO - INTEGER
Output
On exit: INFO $=0$ unless the routine detects an error (see Section 6).

6 Error Indicators and Warnings

$\mathrm{INFO}<0$
If INFO $=-i$, argument i had an illegal value. An explanatory message is output, and execution of the program is terminated.

7 Accuracy

The reduction to the generalized Hessenberg form is implemented using unitary transformations which are backward stable.

8 Parallelism and Performance

Not applicable.

9 Further Comments

This routine is usually followed by F08XSF (ZHGEQZ) which implements the $Q Z$ algorithm for computing generalized eigenvalues of a reduced pair of matrices.
The real analogue of this routine is F08WEF (DGGHRD).

10 Example

See Section 10 in F08XSF (ZHGEQZ) and F08YXF (ZTGEVC).

