NAG Library Routine Document
 F08YLF (DTGSNA)

Abstract

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms and other implementation-dependent details.

1 Purpose

F08YLF (DTGSNA) estimates condition numbers for specified eigenvalues and/or eigenvectors of a matrix pair in generalized real Schur form.

2 Specification

```
SUBROUTINE FO8YLF (JOB, HOWMNY, SELECT, N, A, LDA, B, LDB, VL, LDVL, VR, &
    LDVR, S, DIF, MM, M, WORK, LWORK, IWORK, INFO)
INTEGER N, LDA, LDB, LDVL, LDVR, MM, M, LWORK, IWORK(*), &
    INFO (
    A (LDA,*) , B (LDB **), VL(LDVLL,*), VR(LDVR,*), S (*),
    DIF(*), WORK(max(1,LWORK))
LOGICAL SELECT(*)
CHARACTER(1) JOB, HOWMNY
```

The routine may be called by its LAPACK name dtgsna.

3 Description

F08YLF (DTGSNA) estimates condition numbers for specified eigenvalues and/or right eigenvectors of an n by n matrix pair (S, T) in real generalized Schur form. The routine actually returns estimates of the reciprocals of the condition numbers in order to avoid possible overflow.
The pair (S, T) are in real generalized Schur form if S is block upper triangular with 1 by 1 and 2 by 2 diagonal blocks and T is upper triangular as returned, for example, by F08XAF (DGGES) or F08XBF (DGGESX), or F08XEF (DHGEQZ) with $\mathrm{JOB}=$ ' S '. The diagonal elements, or blocks, define the generalized eigenvalues $\left(\alpha_{i}, \beta_{i}\right)$, for $i=1,2, \ldots, n$, of the pair (S, T) and the eigenvalues are given by

$$
\lambda_{i}=\alpha_{i} / \beta_{i}
$$

so that

$$
\beta_{i} S x_{i}=\alpha_{i} T x_{i} \quad \text { or } \quad S x_{i}=\lambda_{i} T x_{i}
$$

where x_{i} is the corresponding (right) eigenvector.
If S and T are the result of a generalized Schur factorization of a matrix pair (A, B)

$$
A=Q S Z^{\mathrm{T}}, \quad B=Q T Z^{\mathrm{T}}
$$

then the eigenvalues and condition numbers of the pair (S, T) are the same as those of the pair (A, B). Let $(\alpha, \beta) \neq(0,0)$ be a simple generalized eigenvalue of (A, B). Then the reciprocal of the condition number of the eigenvalue $\lambda=\alpha / \beta$ is defined as

$$
s(\lambda)=\frac{\left(\left|y^{\mathrm{T}} A x\right|^{2}+\left|y^{\mathrm{T}} B x\right|^{2}\right)^{1 / 2}}{\left(\|x\|_{2}\|y\|_{2}\right)}
$$

where x and y are the right and left eigenvectors of (A, B) corresponding to λ. If both α and β are zero, then (A, B) is singular and $s(\lambda)=-1$ is returned.
The definition of the reciprocal of the estimated condition number of the right eigenvector x and the left eigenvector y corresponding to the simple eigenvalue λ depends upon whether λ is a real eigenvalue, or one of a complex conjugate pair.

If the eigenvalue λ is real and U and V are orthogonal transformations such that

$$
U^{\mathrm{T}}(A, B) V=(S, T)=\left(\begin{array}{cc}
\alpha & * \\
0 & S_{22}
\end{array}\right)\left(\begin{array}{cc}
\beta & * \\
0 & T_{22}
\end{array}\right)
$$

where S_{22} and T_{22} are $(n-1)$ by $(n-1)$ matrices, then the reciprocal condition number is given by

$$
\operatorname{Dif}(x) \equiv \operatorname{Dif}(y)=\operatorname{Dif}\left((\alpha, \beta),\left(S_{22}, T_{22}\right)\right)=\sigma_{\min }(Z)
$$

where $\sigma_{\min }(Z)$ denotes the smallest singular value of the $2(n-1)$ by $2(n-1)$ matrix

$$
Z=\left(\begin{array}{ll}
\alpha \otimes I & -1 \otimes S_{22} \\
\beta \otimes I & -1 \otimes T_{22}
\end{array}\right)
$$

and \otimes is the Kronecker product.
If λ is part of a complex conjugate pair and U and V are orthogonal transformations such that

$$
U^{\mathrm{T}}(A, B) V=(S, T)=\left(\begin{array}{cc}
S_{11} & * \\
0 & S_{22}
\end{array}\right)\left(\begin{array}{cc}
T_{11} & * \\
0 & T_{22}
\end{array}\right)
$$

where S_{11} and T_{11} are two by two matrices, S_{22} and T_{22} are $(n-2)$ by $(n-2)$ matrices, and $\left(S_{11}, T_{11}\right)$ corresponds to the complex conjugate eigenvalue pair $\lambda, \bar{\lambda}$, then there exist unitary matrices U_{1} and V_{1} such that

$$
U_{1}^{H} S_{11} V_{1}=\left(\begin{array}{cc}
s_{11} & s_{12} \\
0 & s_{22}
\end{array}\right) \quad \text { and } \quad U_{1}^{H} T_{11} V_{1}=\left(\begin{array}{cc}
t_{11} & t_{12} \\
0 & t_{22}
\end{array}\right)
$$

The eigenvalues are given by $\lambda=s_{11} / t_{11}$ and $\bar{\lambda}=s_{22} / t_{22}$. Then the Frobenius norm-based, estimated reciprocal condition number is bounded by

$$
\operatorname{Dif}(x) \equiv \operatorname{Dif}(y) \leq \min \left(d_{1}, \max \left(1,\left|\operatorname{Re}\left(s_{11}\right) / \operatorname{Re}\left(s_{22}\right)\right|\right), d_{2}\right)
$$

where $\operatorname{Re}(z)$ denotes the real part of $z, d_{1}=\operatorname{Dif}\left(\left(s_{11}, t_{11}\right),\left(s_{22}, t_{22}\right)\right)=\sigma_{\min }\left(Z_{1}\right), Z_{1}$ is the complex two by two matrix

$$
Z_{1}=\left(\begin{array}{ll}
s_{11} & -s_{22} \\
t_{11} & -t_{22}
\end{array}\right)
$$

and d_{2} is an upper bound on $\operatorname{Dif}\left(\left(S_{11}, T_{11}\right),\left(S_{22}, T_{22}\right)\right)$; i.e., an upper bound on $\sigma_{\min }\left(Z_{2}\right)$, where Z_{2} is the $(2 n-2)$ by $(2 n-2)$ matrix

$$
Z_{2}=\left(\begin{array}{ll}
S_{11}^{T} \otimes I & -I \otimes S_{22} \\
T_{11}^{T} \otimes I & -I \otimes T_{22}
\end{array}\right)
$$

See Sections 2.4.8 and 4.11 of Anderson et al. (1999) and Kågström and Poromaa (1996) for further details and information.

4 References

Anderson E, Bai Z, Bischof C, Blackford S, Demmel J, Dongarra J J, Du Croz J J, Greenbaum A, Hammarling S, McKenney A and Sorensen D (1999) LAPACK Users' Guide (3rd Edition) SIAM, Philadelphia http://www.netlib.org/lapack/lug
Kågström B and Poromaa P (1996) LAPACK-style algorithms and software for solving the generalized Sylvester equation and estimating the separation between regular matrix pairs ACM Trans. Math. Software 22 78-103

5 Parameters

1: JOB - CHARACTER(1)
Input
On entry: indicates whether condition numbers are required for eigenvalues and/or eigenvectors.
$\mathrm{JOB}=\mathrm{E}^{\prime}$
Condition numbers for eigenvalues only are computed.
$\mathrm{JOB}={ }^{\prime} \mathrm{V}^{\prime}$
Condition numbers for eigenvectors only are computed.
$\mathrm{JOB}=\mathrm{B}^{\prime}$
Condition numbers for both eigenvalues and eigenvectors are computed.
Constraint: $\mathrm{JOB}=\mathrm{E}^{\prime} \mathrm{E}^{\prime}$ ' V ' or ' B '.
2: HOWMNY - CHARACTER(1)
Input
On entry: indicates how many condition numbers are to be computed.
HOWMNY = 'A'
Condition numbers for all eigenpairs are computed.
HOWMNY = 'S'
Condition numbers for selected eigenpairs (as specified by SELECT) are computed.
Constraint: HOWMNY = 'A' or 'S'.
3: $\operatorname{SELECT}(*)$ - LOGICAL array
Input
Note: the dimension of the array SELECT must be at least $\max (1, \mathrm{~N})$ if HOWMNY $=$ ' S ', and at least 1 otherwise.

On entry: specifies the eigenpairs for which condition numbers are to be computed if HOWMNY $=$ 'S'. To select condition numbers for the eigenpair corresponding to the real eigenvalue λ_{j}, $\operatorname{SELECT}(j)$ must be set .TRUE.. To select condition numbers corresponding to a complex conjugate pair of eigenvalues λ_{j} and $\lambda_{j+1}, \operatorname{SELECT}(j)$ and/or $\operatorname{SELECT}(j+1)$ must be set to .TRUE..
If HOWMNY = 'A', SELECT is not referenced.
4: N - INTEGER Input
On entry: n, the order of the matrix pair (S, T).
Constraint: $\mathrm{N} \geq 0$.
5: $\quad \mathrm{A}(\mathrm{LDA}, *)-\mathrm{REAL}(\mathrm{KIND}=$ nag_wp $)$ array
Input
Note: the second dimension of the array A must be at least $\max (1, \mathrm{~N})$.
On entry: the upper quasi-triangular matrix S.
6: LDA - INTEGER Input
On entry: the first dimension of the array A as declared in the (sub)program from which F08YLF (DTGSNA) is called.

Constraint: $\mathrm{LDA} \geq \max (1, \mathrm{~N})$.
7: $\mathrm{B}(\mathrm{LDB}, *)-$ REAL (KIND=nag_wp) array Input
Note: the second dimension of the array B must be at least $\max (1, N)$.
On entry: the upper triangular matrix T.

8: LDB - INTEGER
Input
On entry: the first dimension of the array B as declared in the (sub)program from which F08YLF (DTGSNA) is called.
Constraint: $\operatorname{LDB} \geq \max (1, \mathrm{~N})$.
9: $\quad \mathrm{VL}(\mathrm{LDVL}, *)$ - REAL (KIND=nag_wp) array
Input
Note: the second dimension of the array VL must be at least $\max (1, \mathrm{MM})$ if $\mathrm{JOB}=$ ' E ' or ' B ', and at least 1 otherwise.
On entry: if $\mathrm{JOB}=$ ' E ' or ' B ', VL must contain left eigenvectors of (S, T), corresponding to the eigenpairs specified by HOWMNY and SELECT. The eigenvectors must be stored in consecutive columns of VL, as returned by F08WAF (DGGEV) or F08YKF (DTGEVC).

If $\mathrm{JOB}=\mathrm{V}$ ', VL is not referenced.

10: LDVL - INTEGER
Input
On entry: the first dimension of the array VL as declared in the (sub)program from which F08YLF (DTGSNA) is called.

Constraints

if $\mathrm{JOB}={ }^{\prime} \mathrm{E}$ ' or ' B ', $\operatorname{LDVL} \geq \max (1, \mathrm{~N})$;
otherwise $\mathrm{LDVL} \geq 1$.
11: $\operatorname{VR}(\operatorname{LDVR}, *)-\operatorname{REAL}(\mathrm{KIND}=$ nag_wp) array
Input
Note: the second dimension of the array VR must be at least $\max (1, \mathrm{MM})$ if $\mathrm{JOB}=$ ' E ' or ' B ', and at least 1 otherwise.
On entry: if $\mathrm{JOB}=$ ' E ' or ' B ', VR must contain right eigenvectors of (S, T), corresponding to the eigenpairs specified by HOWMNY and SELECT. The eigenvectors must be stored in consecutive columns of VR, as returned by F08WAF (DGGEV) or F08YKF (DTGEVC).

If $\mathrm{JOB}={ }^{\prime} \mathrm{V}^{\prime}$, VR is not referenced.

12: LDVR - INTEGER
Input
On entry: the first dimension of the array VR as declared in the (sub)program from which F08YLF (DTGSNA) is called.

Constraints:

if $\mathrm{JOB}={ }^{\prime} \mathrm{E}$ ' or 'B', $\operatorname{LDVR} \geq \max (1, \mathrm{~N})$;
otherwise $\mathrm{LDVR} \geq 1$.
$\mathrm{S}(*)$ - REAL (KIND=nag_wp) array
Output
Note: the dimension of the array S must be at least $\max (1, \mathrm{MM})$ if $\mathrm{JOB}=$ ' E ' or ' B ', and at least 1 otherwise.

On exit: if $\mathrm{JOB}=$ ' E ' or ' B ', the reciprocal condition numbers of the selected eigenvalues, stored in consecutive elements of the array. For a complex conjugate pair of eigenvalues two consecutive elements of S are set to the same value. Thus $\mathrm{S}(j)$, $\operatorname{DIF}(j)$, and the j th columns of VL and VR all correspond to the same eigenpair (but not in general the j th eigenpair, unless all eigenpairs are selected).
If $\mathrm{JOB}={ }^{\prime} \mathrm{V}^{\prime}, \mathrm{S}$ is not referenced.

14: $\operatorname{DIF}(*)-$ REAL (KIND=$=$ nag_wp) array
Output
Note: the dimension of the array DIF must be at least $\max (1, \mathrm{MM})$ if $\mathrm{JOB}={ }^{\prime} \mathrm{V}^{\prime}$ ' or ' B ', and at least 1 otherwise.
On exit: if $\mathrm{JOB}=\mathrm{V}^{\prime} \mathrm{V}^{\prime}$ or ' B ', the estimated reciprocal condition numbers of the selected eigenvectors, stored in consecutive elements of the array. For a complex eigenvector two consecutive elements of DIF are set to the same value. If the eigenvalues cannot be reordered to compute $\operatorname{DIF}(j), \operatorname{DIF}(j)$ is set to 0 ; this can only occur when the true value would be very small anyway.
If $\mathrm{JOB}={ }^{\prime} \mathrm{E}$ ', DIF is not referenced.
15: MM - INTEGER
Input
On entry: the number of elements in the arrays S and DIF.

Constraints:

if HOWMNY $=$ ' $\mathrm{A}^{\prime}, \mathrm{MM} \geq \mathrm{N}$;
otherwise $\mathrm{MM} \geq \mathrm{M}$.
16: M - INTEGER
Output
On exit: the number of elements of the arrays S and DIF used to store the specified condition numbers; for each selected real eigenvalue one element is used, and for each selected complex conjugate pair of eigenvalues, two elements are used. If HOWMNY $=$ ' A^{\prime}, M is set to N .

17: $\operatorname{WORK}(\max (1, \operatorname{LWORK}))-$ REAL (KIND=$=$ nag_wp $)$ array
Workspace
On exit: if INFO $=0$, WORK (1) contains the minimum value of LWORK required for optimal performance.

18: LWORK - INTEGER
Input
On entry: the dimension of the array WORK as declared in the (sub)program from which F08YLF (DTGSNA) is called.

If LWORK $=-1$, a workspace query is assumed; the routine only calculates the minimum size of the WORK array, returns this value as the first entry of the WORK array, and no error message related to LWORK is issued.

Constraints: if LWORK $\neq-1$,

$$
\begin{aligned}
& \text { if } \mathrm{JOB}=\text { ' } \mathrm{V} \text { ' or ' } \mathrm{B} \text { ', } \operatorname{LWORK} \geq 2 \times \mathrm{N} \times(\mathrm{N}+2)+16 \text {; } \\
& \text { otherwise } \operatorname{LWORK} \geq \max (1, \mathrm{~N}) .
\end{aligned}
$$

19: $\operatorname{IWORK}(*)$ - INTEGER array
Workspace
Note: the dimension of the array IWORK must be at least $(\mathrm{N}+6)$.
If $\mathrm{JOB}=$ ' E ', IWORK is not referenced.

20: INFO - INTEGER
Output
On exit: INFO $=0$ unless the routine detects an error (see Section 6).

6 Error Indicators and Warnings

INFO <0
If $\operatorname{INFO}=-i$, argument i had an illegal value. An explanatory message is output, and execution of the program is terminated.

7 Accuracy

None.

8 Parallelism and Performance

F08YLF (DTGSNA) is not threaded by NAG in any implementation.
F08YLF (DTGSNA) makes calls to BLAS and/or LAPACK routines, which may be threaded within the vendor library used by this implementation. Consult the documentation for the vendor library for further information.

Please consult the X06 Chapter Introduction for information on how to control and interrogate the OpenMP environment used within this routine. Please also consult the Users' Note for your implementation for any additional implementation-specific information.

9 Further Comments

An approximate asymptotic error bound on the chordal distance between the computed eigenvalue $\tilde{\lambda}$ and the corresponding exact eigenvalue λ is

$$
\chi(\tilde{\lambda}, \lambda) \leq \epsilon\|(A, B)\|_{F} / S(\lambda)
$$

where ϵ is the machine precision.
An approximate asymptotic error bound for the right or left computed eigenvectors \tilde{x} or \tilde{y} corresponding to the right and left eigenvectors x and y is given by

$$
\theta(\tilde{z}, z) \leq \epsilon\|(A, B)\|_{F} / \text { Dif. }
$$

The complex analogue of this routine is F08YYF (ZTGSNA).

10 Example

This example estimates condition numbers and approximate error estimates for all the eigenvalues and eigenvalues and right eigenvectors of the pair (S, T) given by

$$
S=\left(\begin{array}{llrl}
4.0 & 1.0 & 1.0 & 2.0 \\
0 & 3.0 & -1.0 & 1.0 \\
0 & 1.0 & 3.0 & 1.0 \\
0 & 0 & 0 & 6.0
\end{array}\right) \quad \text { and } \quad T=\left(\begin{array}{llll}
2.0 & 1.0 & 1.0 & 3.0 \\
0 & 1.0 & 0.0 & 1.0 \\
0 & 0 & 1.0 & 1.0 \\
0 & 0 & 0 & 2.0
\end{array}\right)
$$

The eigenvalues and eigenvectors are computed by calling F08YKF (DTGEVC).

10.1 Program Text

```
    Program f08ylfe
        FO8YLF Example Program Text
        Mark 25 Release. NAG Copyright 2014.
        .. Use Statements ..
        Use nag_library, Only: dtgevc, dtgsna, f06bnf, f06raf, nag_wp, x02ajf
        .. Implicit None Statement ..
        Implicit None
        .. Parameters ..
        Integer, Parameter :: nin = 5, nout = 6
        .. Local Scalars ..
        Real (Kind=nag_wp) :: eps, snorm, stnrm, tnorm
        Integer :: i, info, lda, ldb, ldvl, ldvr,
        lwork, m, n
! .. Local Arrays ..
        Real (Kind=nag_wp), Allocatable :: a(:,:), b(:,:), dif(:), s(:),
                                    vl(:,:), vr(:,:), work(:)
```

```
    Integer, Allocatable :: iwork(:)
    Logical :: select(1)
    .. Executable Statements ..
    Write (nout,*) 'FO8YLF Example Program Results'
    Write (nout,*)
    Skip heading in data file
    Read (nin,*)
    Read (nin,*) n
    lda = n
    ldb = n
    ldvl = n
    ldvr = n
    lwork = 2*n*(n+2) + 16
    Allocate (a(lda,n),b(ldb,n),dif(n),s(n),vl(ldvl,n),vr(ldvr,n), &
        work(lwork),iwork(n+6))
    Read A and B from data file
    Read (nin,*)(a(i,1:n),i=1,n)
    Read (nin,*)(b(i,1:n),i=1,n)
    Calculate the left and right generalized eigenvectors of the
    pair (A,B). Note that DTGEVC requires WORK to be of dimension
    at least 6*n.
    The NAG name equivalent of dtgevc is f08ykf
    Call dtgevc('Both','All',select,n,a,lda,b,ldb,vl,ldvl,vr,ldvr,n,m,work, &
    info)
    If (info>0) Then
    Write (nout,99999) info, info + 1
Else
    Estimate condition numbers for all the generalized eigenvalues
    and right eigenvectors of the pair (A,B)
    The NAG name equivalent of dtgsna is f08ylf
    Call dtgsna('Both','All',select,n,a,lda,b,ldb,vl,ldvl,vr,ldvr,s,dif,n, &
            m,work,lwork,iwork,info)
    Print condition numbers of eigenvalues and right eigenvectors
    Write (nout,*) 'S'
    Write (nout,99998) s(1:m)
    Write (nout,*)
    Write (nout,*) 'DIF'
    Write (nout,99998) dif(1:m)
    Calculate approximate error estimates
    Compute the 1-norms of A and B and then compute
    SQRT(snorm**2 + tnorm**2)
    eps = x02ajf()
    snorm = f06raf('1-norm',n,n,a,lda,work)
    tnorm = f06raf('1-norm',n,n,b,ldb,work)
    stnrm = f06bnf(snorm,tnorm)
    Write (nout,*)
    Write (nout,*) 'Approximate error estimates for eigenvalues of (A,B)'
    Write (nout,99998)(eps*stnrm/s(i),i=1,m)
    Write (nout,*)
    Write (nout,*) 'Approximate error estimates for right ', &
        'eigenvectors of (A,B)'
    Write (nout,99998)(eps*stnrm/dif(i),i=1,m)
End If
99999 Format (' The 2-by-2 block (',I5,':',I5,') does not have a co', &
    'mplex eigenvalue')
99998 Format ((3X,1P,7E11.1))
    End Program f08ylfe
```


10.2 Program Data

```
FO8YLF Example Program Data
    4 :Value of N
    4.0 1.0 1.0 2.0
    0.0 3.0 -1.0 1.0
    0.0 1.0 3.0 1.0
    0.0 0.0 0.0 6.0 : End of matrix A
    2.0 1.0 1.0 3.0
    0.0 1.0 0.0 1.0
    0.0 0.0 1.0 1.0
    0.0 0.0 0.0 2.0 :End of matrix B
```


10.3 Program Results

```
FO8YLF Example Program Results
S
```

$1.6 E+00$

1. $7 \mathrm{E}+00$
2. $7 \mathrm{E}+00$
$1.4 \mathrm{E}+00$
```
DIF
5.4E-01 1.5E-01 1.5E-01 1.2E-01
Approximate error estimates for eigenvalues of (A, B) 8.7E-16 7.8E-16 7.8E-16 9.9E-16
Approximate error estimates for right eigenvectors of ( \(A, B\) ) \(\begin{array}{llll}2.5 \mathrm{E}-15 & 9.0 \mathrm{E}-15 & 9.0 \mathrm{E}-15 & 1.1 \mathrm{E}-14\end{array}\)
```

