NAG Library Routine Document
 F08ZEF (DGGQRF)

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

F08ZEF (DGGQRF) computes a generalized $Q R$ factorization of a real matrix pair (A, B), where A is an n by m matrix and B is an n by p matrix.

2 Specification

```
SUBROUTINE FO8ZEF (N, M, P, A, LDA, TAUA, B, LDB, TAUB, WORK, LWORK,
    INFO)
INTEGER N, M, P, LDA, LDB, LWORK, INFO
REAL (KIND=nag_wp) A(LDA,*), TAUA(min(N,M)), B(LDB,*), TAUB(min(N,P)),
    WORK(max (1,LWORK))
```

The routine may be called by its LAPACK name dggqrf.

3 Description

F08ZEF (DGGQRF) forms the generalized $Q R$ factorization of an n by matrix A and an n by p matrix B

$$
A=Q R, \quad B=Q T Z
$$

where Q is an n by n orthogonal matrix, Z is a p by p orthogonal matrix and R and T are of the form

$$
R=\left\{\begin{aligned}
& m \\
& m\binom{R_{11}}{0}, \text { if } n \geq m \\
& n m m-n \\
& n\left(\begin{array}{rr}
n & R_{11}
\end{array}\right), \text { if } n<m
\end{aligned}\right.
$$

with R_{11} upper triangular,

$$
T=\left\{\begin{aligned}
& n\left(\begin{array}{rr}
p-n & n \\
0 & T_{12}
\end{array}\right), \text { if } n \leq p \\
& p \\
& n-p\binom{T_{11}}{T_{21}}, \text { if } n>p
\end{aligned}\right.
$$

with T_{12} or T_{21} upper triangular.
In particular, if B is square and nonsingular, the generalized $Q R$ factorization of A and B implicitly gives the $Q R$ factorization of $B^{-1} A$ as

$$
B^{-1} A=Z^{\mathrm{T}}\left(T^{-1} R\right)
$$

4 References

Anderson E, Bai Z, Bischof C, Blackford S, Demmel J, Dongarra J J, Du Croz J J, Greenbaum A, Hammarling S, McKenney A and Sorensen D (1999) LAPACK Users' Guide (3rd Edition) SIAM, Philadelphia http://www.netlib.org/lapack/lug
Anderson E, Bai Z and Dongarra J (1992) Generalized $Q R$ factorization and its applications Linear Algebra Appl. (Volume 162-164) 243-271

Hammarling S (1987) The numerical solution of the general Gauss-Markov linear model Mathematics in Signal Processing (eds T S Durrani, J B Abbiss, J E Hudson, R N Madan, J G McWhirter and T A Moore) 441-456 Oxford University Press
Paige C C (1990) Some aspects of generalized $Q R$ factorizations. In Reliable Numerical Computation (eds M G Cox and S Hammarling) 73-91 Oxford University Press

5 Parameters

1: $\quad \mathrm{N}$ - INTEGER
Input
On entry: n, the number of rows of the matrices A and B.
Constraint: $\mathrm{N} \geq 0$.
2: M - INTEGER Input
On entry: m, the number of columns of the matrix A.
Constraint: $\mathrm{M} \geq 0$.

3: $\quad \mathrm{P}$ - INTEGER
Input
On entry: p, the number of columns of the matrix B.
Constraint: $\mathrm{P} \geq 0$.
4: $\mathrm{A}(\mathrm{LDA}, *)-\mathrm{REAL}(\mathrm{KIND}=$ nag_wp $)$ array
Input/Output
Note: the second dimension of the array A must be at least max $(1, \mathrm{M})$.
On entry: the n by m matrix A.
On exit: the elements on and above the diagonal of the array contain the $\min (n, m)$ by m upper trapezoidal matrix R (R is upper triangular if $n \geq m$); the elements below the diagonal, with the array TAUA, represent the orthogonal matrix Q as a product of $\min (n, m)$ elementary reflectors (see Section 3.3.6 in the F08 Chapter Introduction).

5: LDA - INTEGER
Input
On entry: the first dimension of the array A as declared in the (sub)program from which F08ZEF (DGGQRF) is called.

Constraint: LDA $\geq \max (1, \mathrm{~N})$.
6: \quad TAUA $(\min (N, M))-R E A L\left(K I N D=n a g _w p\right)$ array
Output
On exit: the scalar factors of the elementary reflectors which represent the orthogonal matrix Q.
7: $\quad \mathrm{B}(\mathrm{LDB}, *)-\mathrm{REAL}(\mathrm{KIND}=$ nag_wp) array
Input/Output
Note: the second dimension of the array B must be at least $\max (1, \mathrm{P})$.
On entry: the n by p matrix B.
On exit: if $n \leq p$, the upper triangle of the subarray $\mathrm{B}(1: n, p-n+1: p)$ contains the n by n upper triangular matrix T_{12}.

If $n>p$, the elements on and above the $(n-p)$ th subdiagonal contain the n by p upper trapezoidal matrix T; the remaining elements, with the array TAUB, represent the orthogonal matrix Z as a product of elementary reflectors (see Section 3.3.6 in the F08 Chapter Introduction).

8: LDB - INTEGER
Input
On entry: the first dimension of the array B as declared in the (sub)program from which F08ZEF (DGGQRF) is called.
Constraint: $\operatorname{LDB} \geq \max (1, \mathrm{~N})$.
9: $\quad \operatorname{TAUB}(\min (\mathrm{N}, \mathrm{P}))-\operatorname{REAL}(\mathrm{KIND}=$ nag_wp $)$ array
Output
On exit: the scalar factors of the elementary reflectors which represent the orthogonal matrix Z.
10: $\quad \operatorname{WORK}(\max (1$, LWORK $))-$ REAL $(\mathrm{KIND}=$ nag_wp $)$ array
Workspace
On exit: if INFO $=0, \operatorname{WORK}(1)$ contains the minimum value of LWORK required for optimal performance.

11: LWORK - INTEGER
Input
On entry: the dimension of the array WORK as declared in the (sub)program from which F08ZEF (DGGQRF) is called.
If LWORK $=-1$, a workspace query is assumed; the routine only calculates the optimal size of the WORK array, returns this value as the first entry of the WORK array, and no error message related to LWORK is issued.

Suggested value: for optimal performance, LWORK $\geq \max (\mathrm{N}, \mathrm{M}, \mathrm{P}) \times \max (n b 1, n b 2, n b 3)$, where $n b 1$ is the optimal block size for the $Q R$ factorization of an n by m matrix, $n b 2$ is the optimal block size for the $R Q$ factorization of an n by p matrix, and $n b 3$ is the optimal block size for a call of F08AGF (DORMQR).

Constraint: $\operatorname{LWORK} \geq \max (1, \mathrm{~N}, \mathrm{M}, \mathrm{P})$ or $\operatorname{LWORK}=-1$.

12: INFO - INTEGER
Output
On exit: INFO $=0$ unless the routine detects an error (see Section 6).

6 Error Indicators and Warnings

INFO <0
If INFO $=-i$, argument i had an illegal value. An explanatory message is output, and execution of the program is terminated.

7 Accuracy

The computed generalized $Q R$ factorization is the exact factorization for nearby matrices $(A+E)$ and $(B+F)$, where

$$
\|E\|_{2}=O \epsilon\|A\|_{2} \quad \text { and } \quad\|F\|_{2}=O \epsilon\|B\|_{2},
$$

and ϵ is the machine precision.

8 Parallelism and Performance

F08ZEF (DGGQRF) is threaded by NAG for parallel execution in multithreaded implementations of the NAG Library.
F08ZEF (DGGQRF) makes calls to BLAS and/or LAPACK routines, which may be threaded within the vendor library used by this implementation. Consult the documentation for the vendor library for further information.

Please consult the X06 Chapter Introduction for information on how to control and interrogate the OpenMP environment used within this routine. Please also consult the Users' Note for your implementation for any additional implementation-specific information.

9 Further Comments

The orthogonal matrices Q and Z may be formed explicitly by calls to F08AFF (DORGQR) and F08CJF (DORGRQ) respectively. F08AGF (DORMQR) may be used to multiply Q by another matrix and F08CKF (DORMRQ) may be used to multiply Z by another matrix.

The complex analogue of this routine is F08ZSF (ZGGQRF).

10 Example

This example solves the general Gauss-Markov linear model problem

$$
\min _{x}\|y\|_{2} \quad \text { subject to } \quad d=A x+B y
$$

where

$$
A=\left(\begin{array}{rrr}
-0.57 & -1.28 & -0.39 \\
-1.93 & 1.08 & -0.31 \\
2.30 & 0.24 & -0.40 \\
-0.02 & 1.03 & -1.43
\end{array}\right), \quad B=\left(\begin{array}{llll}
0.5 & 0 & 0 & 0 \\
0 & 1.0 & 0 & 0 \\
0 & 0 & 2.0 & 0 \\
0 & 0 & 0 & 5.0
\end{array}\right) \quad \text { and } \quad d=\left(\begin{array}{r}
1.32 \\
-4.00 \\
5.52 \\
3.24
\end{array}\right) .
$$

The solution is obtained by first computing a generalized $Q R$ factorization of the matrix pair (A, B). The example illustrates the general solution process, although the above data corresponds to a simple weighted least squares problem.
Note that the block size (NB) of 64 assumed in this example is not realistic for such a small problem, but should be suitable for large problems.

10.1 Program Text

```
    Program f08zefe
    FO8ZEF Example Program Text
    Mark 25 Release. NAG Copyright 2014.
    .. Use Statements ..
    Use nag_library, Only: dgemv, dggqrf, dnrm2, dormqr, dormrq, dtrtrs,
                                    nag_wp
    .. Implicit None Statement ..
    Implicit None
    .. Parameters ..
    Real (Kind=nag_wp), Parameter :: one = 1.0EO_nag_wp
    Real (Kind=nag_wp), Parameter :: zero = O.OEO_nag_wp
    Integer, Parameter : : nb = 64, nin = 5, nout = 6
    .. Local Scalars ..
    Real (Kind=nag_wp) :: rnorm
    Integer :: i, info, lda, ldb, lwork, m, n, p
    Real (Kind=nag_wp), Allocatable :: a(:,:), b(:,:), d(:), taua(:),
                                    taub(:), work(:), y(:)
! .. Intrinsic Procedures .
    Intrinsic :: max, min
! .. Executable Statements ..
    Write (nout,*) 'F08ZEF Example Program Results'
    Write (nout,*)
! Skip heading in data file
    Read (nin,*)
    Read (nin,*) n, m, p
    lda = n
    ldb = n
    lwork = nb*(m+p)
    Allocate (a(lda,m),b(ldb,p),d(n),taua(m),taub(m+p),work(lwork),y(p))
! Read A, B and D from data file
    Read (nin,*)(a(i,1:m),i=1,n)
    Read (nin,*)(b(i,1:p),i=1,n)
```

```
Read (nin,*) d(1:n)
Compute the generalized QR factorization of (A,B) as
A = Q*(R), B = Q*(T11 T12)*Z
    (0) ( O T22)
The NAG name equivalent of dggqrf is f08zef
Call dggqrf(n,m,p,a,lda,taua,b,ldb,taub,work,lwork,info)
Compute c = (c1) = (Q**T)*d, storing the result in D
    (c2)
The NAG name equivalent of dormqr is f08agf
Call dormqr('Left','Transpose',n,1,m,a,lda,taua,d,n,work,lwork,info)
Putting Z*y = w = (w1), set w1 = 0, storing the result in Y1
    (w2)
y(1:m+p-n) = zero
If (n>m) Then
    Copy c2 into Y2
    y(m+p-n+1:p) = d(m+1:n)
    Solve T22*w2 = c2 for w2, storing result in Y2
    The NAG name equivalent of dtrtrs is f07tef
    Call dtrtrs('Upper','No transpose','Non-unit',n-m,1,b(m+1,m+p-n+1), &
        ldb,y(m+p-n+1),n-m,info)
    If (info>0) Then
        Write (nout,*) &
            'The upper triangular factor, T22, of B is singular, '
        Write (nout,*) 'the least squares solution could not be computed'
        Go To 100
    End If
    Compute estimate of the square root of the residual sum of squares
    norm(y) = norm(w2)
    The NAG name equivalent of dnrm2 is f06ejf
    rnorm = dnrm2(n-m,y(m+p-n+1),1)
    Form c1 - T12*w2 in D
    The NAG name equivalent of dgemv is f06paf
    Call dgemv('No transpose',m,n-m,-one,b(1,m+p-n+1),ldb,y(m+p-n+1),1, &
        one,d,1)
End If
Solve R*x = c1 - T12*w2 for x
The NAG name equivalent of dtrtrs is f07tef
Call dtrtrs('Upper','No transpose','Non-unit',m,1,a,lda,d,m,info)
If (info>0) Then
    Write (nout,*) 'The upper triangular factor, R, of A is singular, '
    Write (nout,*) 'the least squares solution could not be computed'
Else
    Compute y = (z**T)**W
    The NAG name equivalent of dormrq is f08ckf
    Call dormrq('Left','Transpose',p,1,min(n,p),b(max(1, &
        n-p+1),1),ldb,taub,y,p,work,lwork,info)
    Print least squares solution x
    Write (nout,*) 'Generalized least squares solution'
    Write (nout,99999) d(1:m)
    Print residual vector y
    Write (nout,*)
    Write (nout,*) 'Residual vector'
    Write (nout,99998) y(1:p)
```

```
! Print estimate of the square root of the residual sum of squares
    Write (nout,*)
    Write (nout,*) 'Square root of the residual sum of squares'
    Write (nout,99998) rnorm
    End If
100 Continue
99999 Format (1X,7F11.4)
99998 Format (3X,1P,7E11.2)
    End Program f08zefe
```


10.2 Program Data

F08ZEF Example Program Data

4	3	4		:Values of N, M and P
-0.57	-1.28	-0.39		
-1.93	1.08	-0.31		
2.30	0.24	-0.40		
-0.02	1.03	-1.43		: End of matrix A
0.50	0.00	0.00	0.00	
0.00	1.00	0.00	0.00	
0.00	0.00	2.00	0.00	
0.00	0.00	0.00	5.00	: End of matrix B
1.32				
-4.00				
5.52				
3.24				:End of vector d

10.3 Program Results

```
FO8ZEF Example Program Results
Generalized least squares solution
    1.9889 -1.0058 -2.9911
Residual vector
    -6.37E-04 -2.45E-03 -4.72E-03 7.70E-03
Square root of the residual sum of squares
    9.38E-03
```

