NAG Library Routine Document
 G02HMF

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms and other implementation-dependent details.

1 Purpose

G02HMF computes a robust estimate of the covariance matrix for user-supplied weight functions. The derivatives of the weight functions are not required.

2 Specification

```
SUBROUTINE GO2HMF (UCV, RUSER, INDM, N, M, X, LDX, COV, A, WT, THETA,
                                    BL, BD, MAXIT, NITMON, TOL, NIT, WK, IFAIL)
INTEGER INDM, N, M, LDX, MAXIT, NITMON, NIT, IFAIL
REAL (KIND=nag_wp) RUSER(*), X(LDX,M), COV (M* (M+1)/2), A(M* (M+1)/2),
    WT(N), THETA(M), BL, BD, TOL, WK(2*M)
EXTERNAL UCV
```


3 Description

For a set of n observations on m variables in a matrix X, a robust estimate of the covariance matrix, C, and a robust estimate of location, θ, are given by

$$
C=\tau^{2}\left(A^{\mathrm{T}} A\right)^{-1}
$$

where τ^{2} is a correction factor and A is a lower triangular matrix found as the solution to the following equations.

$$
\begin{gathered}
z_{i}=A\left(x_{i}-\theta\right) \\
\frac{1}{n} \sum_{i=1}^{n} w\left(\left\|z_{i}\right\|_{2}\right) z_{i}=0
\end{gathered}
$$

and

$$
\frac{1}{n} \sum_{i=1}^{n} u\left(\left\|z_{i}\right\|_{2}\right) z_{i} z_{i}^{\mathrm{T}}-v\left(\left\|z_{i}\right\|_{2}\right) I=0
$$

where x_{i} is a vector of length m containing the elements of the i th row of X,
z_{i} is a vector of length m,
I is the identity matrix and 0 is the zero matrix.
and $\quad w$ and u are suitable functions.
G02HMF covers two situations:
(i) $v(t)=1$ for all t,
(ii) $v(t)=u(t)$.

The robust covariance matrix may be calculated from a weighted sum of squares and cross-products matrix about θ using weights $w t_{i}=u\left(\left\|z_{i}\right\|\right)$. In case (i) a divisor of n is used and in case (ii) a divisor of
$\sum_{i=1}^{n} w t_{i}$ is used. If $w()=.\sqrt{u(.)}$, then the robust covariance matrix can be calculated by scaling each row of X by $\sqrt{w t_{i}}$ and calculating an unweighted covariance matrix about θ.

In order to make the estimate asymptotically unbiased under a Normal model a correction factor, τ^{2}, is needed. The value of the correction factor will depend on the functions employed (see Huber (1981) and Marazzi (1987)).

G02HMF finds A using the iterative procedure as given by Huber; see Huber (1981).

$$
A_{k}=\left(S_{k}+I\right) A_{k-1}
$$

and

$$
\theta_{j_{k}}=\frac{b_{j}}{D_{1}}+\theta_{j_{k-1}}
$$

where $S_{k}=\left(s_{j l}\right)$, for $j=1,2, \ldots, m$ and $l=1,2, \ldots, m$ is a lower triangular matrix such that

$$
s_{j l}= \begin{cases}-\min \left[\max \left(h_{j l} / D_{2},-B L\right), B L\right], & j>l \\ -\min \left[\max \left(\frac{1}{2}\left(h_{j j} / D_{2}-1\right),-B D\right), B D\right], & j=l\end{cases}
$$

where

$$
\begin{aligned}
& D_{1}=\sum_{i=1}^{n} w\left(\left\|z_{i}\right\|_{2}\right) \\
& D_{2}=\sum_{i=1}^{n} u\left(\left\|z_{i}\right\|_{2}\right) \\
& h_{j l}=\sum_{i=1}^{n} u\left(\left\|z_{i}\right\|_{2}\right) z_{i j} z_{i l}, \text { for } j \geq l \\
& b_{j}
\end{aligned}=\sum_{i=1}^{n} w\left(\left\|z_{i}\right\|_{2}\right)\left(x_{i j}-b_{j}\right)
$$

and $B D$ and $B L$ are suitable bounds.
The value of τ may be chosen so that C is unbiased if the observations are from a given distribution. G02HMF is based on routines in ROBETH; see Marazzi (1987).

4 References

Huber P J (1981) Robust Statistics Wiley
Marazzi A (1987) Weights for bounded influence regression in ROBETH Cah. Rech. Doc. IUMSP, No. 3 ROB 3 Institut Universitaire de Médecine Sociale et Préventive, Lausanne

5 Parameters

1: UCV - SUBROUTINE, supplied by the user.
UCV must return the values of the functions u and w for a given value of its argument.

The specification of UCV is:
SUBROUTINE UCV (T, RUSER, U, W)
REAL (KIND=nag_wp) T, RUSER(*), U, W

1: \quad T - REAL (KIND=nag_wp)
Input
On entry: the argument for which the functions u and w must be evaluated.
2: $\operatorname{RUSER}(*)-\operatorname{REAL}(\operatorname{KIND=}=$ nag_wp $)$ array
User Workspace
UCV is called with the parameter RUSER as supplied to G02HMF. You are free to use the array RUSER to supply information to UCV as an alternative to using COMMON global variables.

U - REAL (KIND=nag_wp)
Output
On exit: the value of the u function at the point T.
Constraint: $\mathrm{U} \geq 0.0$.
W - REAL (KIND=nag_wp)
Output
On exit: the value of the w function at the point T .
Constraint: W ≥ 0.0.
UCV must either be a module subprogram USEd by, or declared as EXTERNAL in, the (sub)program from which G02HMF is called. Parameters denoted as Input must not be changed by this procedure.

RUSER(*) - REAL (KIND=nag_wp) array
User Workspace
RUSER is not used by G02HMF, but is passed directly to UCV and may be used to pass information to this routine as an alternative to using COMMON global variables.

3: INDM - INTEGER
Input
On entry: indicates which form of the function v will be used.
$\begin{aligned} \mathrm{INDM} & =1 \\ v & =1 .\end{aligned}$
INDM $\neq 1$
$v=u$.

4: $\quad \mathrm{N}$ - INTEGER
Input
On entry: n, the number of observations.
Constraint: $\mathrm{N}>1$.

5: M - INTEGER
Input
On entry: m, the number of columns of the matrix X, i.e., number of independent variables.
Constraint: $1 \leq \mathrm{M} \leq \mathrm{N}$.

6: $\mathrm{X}(\mathrm{LDX}, \mathrm{M})$ - REAL (KIND=nag_wp) array Input
On entry: $\mathrm{X}(i, j)$ must contain the i th observation on the j th variable, for $i=1,2, \ldots, n$ and $j=1,2, \ldots, m$.

7: LDX - INTEGER
Input
On entry: the first dimension of the array X as declared in the (sub)program from which G02HMF is called.

Constraint: LDX $\geq \mathrm{N}$.

8: $\quad \operatorname{COV}(\mathrm{M} \times(\mathrm{M}+1) / 2)-\mathrm{REAL}(\mathrm{KIND}=$ nag_wp $)$ array
Output
On exit: a robust estimate of the covariance matrix, C. The upper triangular part of the matrix C is stored packed by columns (lower triangular stored by rows), that is $C_{i j}$ is returned in $\operatorname{COV}(j \times(j-1) / 2+i), i \leq j$.

9: $\quad \mathrm{A}(\mathrm{M} \times(\mathrm{M}+1) / 2)-$ REAL $\left(\mathrm{KIND}=\right.$ nag_wp $\left.^{\mathrm{w}}\right)$ array
Input/Output
On entry: an initial estimate of the lower triangular real matrix A. Only the lower triangular elements must be given and these should be stored row-wise in the array.

The diagonal elements must be $\neq 0$, and in practice will usually be >0. If the magnitudes of the columns of X are of the same order, the identity matrix will often provide a suitable initial value for A. If the columns of X are of different magnitudes, the diagonal elements of the initial value of A should be approximately inversely proportional to the magnitude of the columns of X.
Constraint: $\mathrm{A}(j \times(j-1) / 2+j) \neq 0.0$, for $j=1,2, \ldots, m$.
On exit: the lower triangular elements of the inverse of the matrix A, stored row-wise.
10: $\mathrm{WT}(\mathrm{N})-\mathrm{REAL}(\mathrm{KIND}=$ nag_wp) array
Output
On exit: WT (i) contains the weights, $w t_{i}=u\left(\left\|z_{i}\right\|_{2}\right)$, for $i=1,2, \ldots, n$.
11: $\operatorname{THETA}(\mathrm{M})-\operatorname{REAL}(\mathrm{KIND}=$ nag_wp) array
Input/Output
On entry: an initial estimate of the location parameter, θ_{j}, for $j=1,2, \ldots, m$.
In many cases an initial estimate of $\theta_{j}=0$, for $j=1,2, \ldots, m$, will be adequate. Alternatively medians may be used as given by G07DAF.
On exit: contains the robust estimate of the location parameter, θ_{j}, for $j=1,2, \ldots, m$.
12: $\quad \mathrm{BL}-\mathrm{REAL}(\mathrm{KIND}=$ nag_wp $)$
Input
On entry: the magnitude of the bound for the off-diagonal elements of $S_{k}, B L$.
Suggested value: $\mathrm{BL}=0.9$.
Constraint: BL >0.0.
13: $\quad \mathrm{BD}-\mathrm{REAL}(\mathrm{KIND}=$ nag_wp $)$
Input
On entry: the magnitude of the bound for the diagonal elements of $S_{k}, B D$.
Suggested value: $\mathrm{BD}=0.9$.
Constraint: BD >0.0.

14: MAXIT - INTEGER Input
On entry: the maximum number of iterations that will be used during the calculation of A.
Suggested value: MAXIT $=150$.
Constraint: MAXIT >0.

15: NITMON - INTEGER
Input
On entry: indicates the amount of information on the iteration that is printed.
NITMON >0
The value of A, θ and δ (see Section 7) will be printed at the first and every NITMON iterations.

NITMON ≤ 0
No iteration monitoring is printed.

When printing occurs the output is directed to the current advisory message channel (See X04ABF.)

16: TOL - REAL (KIND=nag_wp)
Input
On entry: the relative precision for the final estimate of the covariance matrix. Iteration will stop when maximum δ (see Section 7) is less than TOL.

Constraint: TOL > 0.0.

17: NIT - INTEGER
On exit: the number of iterations performed.
18: $\quad \mathrm{WK}(2 \times \mathrm{M})-$ REAL $(\mathrm{KIND}=$ nag_wp $)$ array
19: IFAIL - INTEGER
Input/Output
On entry: IFAIL must be set to $0,-1$ or 1 . If you are unfamiliar with this parameter you should refer to Section 3.3 in the Essential Introduction for details.

For environments where it might be inappropriate to halt program execution when an error is detected, the value -1 or 1 is recommended. If the output of error messages is undesirable, then the value 1 is recommended. Otherwise, if you are not familiar with this parameter, the recommended value is 0 . When the value -1 or 1 is used it is essential to test the value of IFAIL on exit.

On exit: IFAIL $=0$ unless the routine detects an error or a warning has been flagged (see Section 6).

6 Error Indicators and Warnings

If on entry IFAIL $=0$ or -1 , explanatory error messages are output on the current error message unit (as defined by X04AAF).

Errors or warnings detected by the routine:
IFAIL $=1$
On entry, $\mathrm{N} \leq 1$,
or $\quad \mathrm{M}<1$,
or $\quad \mathrm{N}<\mathrm{M}$,
or $\quad \mathrm{LDX}<\mathrm{N}$.
IFAIL $=2$
On entry, TOL ≤ 0.0,
or \quad MAXIT ≤ 0,
or diagonal element of $\mathrm{A}=0.0$,
or $\quad \mathrm{BL} \leq 0.0$,
or $\quad \mathrm{BD} \leq 0.0$.

IFAIL $=3$
A column of X has a constant value.

IFAIL $=4$
Value of U or W returned by $\mathrm{UCV}<0$.
IFAIL $=5$
The routine has failed to converge in MAXIT iterations.

IFAIL $=6$
Either the sum D_{1} or the sum D_{2} is zero. This may be caused by the functions u or w being too strict for the current estimate of A (or C). You should either try a larger initial estimate of A or make the u and w functions less strict.

IFAIL $=-99$
An unexpected error has been triggered by this routine. Please contact NAG.
See Section 3.8 in the Essential Introduction for further information.
IFAIL $=-399$
Your licence key may have expired or may not have been installed correctly.
See Section 3.7 in the Essential Introduction for further information.
IFAIL $=-999$
Dynamic memory allocation failed.
See Section 3.6 in the Essential Introduction for further information.

7 Accuracy

On successful exit the accuracy of the results is related to the value of TOL; see Section 5. At an iteration let
(i) $d 1=$ the maximum value of $\left|s_{j l}\right|$
(ii) $d 2=$ the maximum absolute change in $w t(i)$
(iii) $d 3=$ the maximum absolute relative change in θ_{j}
and let $\delta=\max (d 1, d 2, d 3)$. Then the iterative procedure is assumed to have converged when $\delta<$ TOL.

8 Parallelism and Performance

G02HMF is not threaded by NAG in any implementation.
G02HMF makes calls to BLAS and/or LAPACK routines, which may be threaded within the vendor library used by this implementation. Consult the documentation for the vendor library for further information.

Please consult the X06 Chapter Introduction for information on how to control and interrogate the OpenMP environment used within this routine. Please also consult the Users' Note for your implementation for any additional implementation-specific information.

9 Further Comments

The existence of A will depend upon the function u (see Marazzi (1987)); also if X is not of full rank a value of A will not be found. If the columns of X are almost linearly related, then convergence will be slow.

If derivatives of the u and w functions are available then the method used in G02HLF will usually give much faster convergence.

10 Example

A sample of 10 observations on three variables is read in along with initial values for A and θ and parameter values for the u and w functions, c_{u} and c_{w}. The covariance matrix computed by G02HMF is printed along with the robust estimate of θ.

UCV computes the Huber's weight functions:

$$
\begin{aligned}
& u(t)=1, \quad \text { if } \quad t \leq c_{u}^{2} \\
& u(t)=\frac{c_{u}}{t^{2}}, \quad \text { if } \quad t>c_{u}^{2}
\end{aligned}
$$

and

$$
\begin{array}{ll}
w(t)=1, & \text { if } \quad t \leq c_{w} \\
w(t)=\frac{c_{w}}{t}, \quad \text { if } \quad t>c_{w} .
\end{array}
$$

10.1 Program Text

G02HMF Example Program Text
Mark 25 Release. NAG Copyright 2014.

Module 902 hmfe mod
GO2HMF Example Program Module: Parameters and User-defined Routines
.. Use Statements ..
Use nag_library, Only: nag_wp
.. Implicit None Statement ..
Implicit None
.. Accessibility Statements ..
Private
Public :: ucv
.. Parameters ..
Integer, Parameter, Public : iset $=1$, nin $=5$, nout $=6$
Contains
Subroutine ucv(t,ruser,u,w)
u function
.. Scalar Arguments ..
Real (Kind=nag_wp), Intent (In) : t
Real (Kind=nag_wp), Intent (Out) : u, w
.. Array Arguments ..
Real (Kind=nag_wp), Intent (Inout) : ruser(*)
.. Local Scalars ..
Real (Kind=nag_wp) : : cu, cw, t2
.. Executable Statements ..
$\mathrm{cu}=$ ruser (1)
$u=1.0 _n a g _w p$
If (t/=0.0_nag_wp) Then
$t 2=t * t$
If (t2>cu) Then
$u=c u / t 2$
End If
End If
w function
$\mathrm{Cw}=$ ruser (2)
If ($t>c w$) Then $\mathrm{w}=\mathrm{cw} / \mathrm{t}$
Else w = 1.0_nag_wp
End If
End Subroutine ucv
End Module g02hmfe_mod
Program g02hmfe
! GO2HMF Example Main Program
! .. Use Statements ..
Use nag_library, Only: g02hmf, nag_wp, x04abf, x04ccf
Use g02hmfe_mod, Only: iset, nin, nout, ucv
! .. Implicit None Statement ..
Implicit None
! .. Local Scalars ..
Real (Kind=nag_wp) :: bd, bl, tol
Integer : : i, ifail, indm, la, lcov, ldx, \& lruser, m, maxit, n, nadv, nit, \& nitmon
! .. Local Arrays ..
Real (Kind=nag_wp), Allocatable : a(:), cov(:), ruser(:), \&
theta(:), wk(:), wt(:), x(:,:)
.. Executable Statements ..
Write (nout,*) 'GO2HMF Example Program Results'
Write (nout,*)
! Skip heading in data file
Read (nin,*)
! Read in the problem size
Read (nin,*) n, m
$l d x=n$
lruser = 2
$l a=((m+1) * m) / 2$
lcov = la
Allocate $(x(l d x, m), r u s e r(l r u s e r), c o v(l c o v), a(l a), w t(n)$, theta(m), wk(2*m))
! Read in data
Read (nin,*) (x(i,1:m),i=1,n)
Read in the initial value of A
Read (nin,*) a(1:la)
Read in the initial value of THETA
Read (nin,*) theta(1:m)
Read in the values of the parameters of the ucv functions
Read (nin,*) ruser(1:lruser)

Read in the control parameters
Read (nin,*) indm, nitmon, bl, bd, maxit, tol
! Set the advisory channel to NOUT for monitoring information
If (nitmon/=0) Then
nadv = nout
Call x04abf(iset,nadv)
End If
! Compute robust estimate of variance / covariance matrix
ifail = 0
Call g02hmf(ucv,ruser, indm, $n, m, x, l d x, c o v, a, w t, t h e t a, b l, b d, m a x i t, n i t m o n, ~ \& ~$ tol,nit,wk,ifail)

Display results
Write (nout, 99999) 'G02HMF required ', nit, ' iterations to converge'
Write (nout,*)
Flush (nout)
ifail = O
Call x04ccf('Upper','Non-Unit',m,cov,'Robust covariance matrix',ifail)
Write (nout,*)
Write (nout,*) 'Robust estimates of THETA'
Write (nout,99998) theta(1:m)
99999 Format (1X,A,IO,A)
99998 Format (1X,F10.3)
End Program g02hmfe

10.2 Program Data

```
GO2HMF Example Program Data
    10 3 : N,M
    3.4 6.9 12.2
    6.4 2.5 15.1
    4.9 5.5 14.2
    7.3 1.9 18.2
    8.8 3.6 11.7
    8.4 1.3 17.9
    5.3 3.1 15.0
    2.7 8.1 7.7
    6.1 3.0 21.9
    5.3 2.2 13.9 : End of X
    1.0 0.0 1.0 0.0 0.0 1.0 : A
    0.0 0.0 0.0 : THETA
    4.0 2.0 : RUSER
1 0 0.9 0.9 50 5.0E-5 : INDM,NITMON,BL,BD,MAXIT,TOL
```


10.3 Program Results

G02HMF Example Program Results		
G02HMF required 34 iterations to converge		
Robust	covariance matrix	
	12	3
1	$3.2779-3.6918$	4.7391
2	5.2841	-6.4087
3		11.8373
Robust estimates of THETA		
	700	
	864	
	704	

