
NAG Library Routine Document

G05ZQF

Note: before using this routine, please read the Users’ Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

G05ZQF performs the setup required in order to simulate stationary Gaussian random fields in two
dimensions, for a user-defined variogram, using the circulant embedding method. Specifically, the
eigenvalues of the extended covariance matrix (or embedding matrix) are calculated, and their square
roots output, for use by G05ZSF, which simulates the random field.

2 Specification

SUBROUTINE G05ZQF (NS, XMIN, XMAX, YMIN, YMAX, MAXM, VAR, COV2, EVEN,
PAD, ICORR, LAM, XX, YY, M, APPROX, RHO, ICOUNT, EIG,
IUSER, RUSER, IFAIL)

&
&

INTEGER NS(2), MAXM(2), EVEN, PAD, ICORR, M(2), APPROX,
ICOUNT, IUSER(*), IFAIL

&

REAL (KIND=nag_wp) XMIN, XMAX, YMIN, YMAX, VAR, LAM(MAXM(1)*MAXM(2)),
XX(NS(1)), YY(NS(2)), RHO, EIG(3), RUSER(*)

&

EXTERNAL COV2

3 Description

A two-dimensional random field Z xð Þ in R
2 is a function which is random at every point x 2 R

2, so
Z xð Þ is a random variable for each x. The random field has a mean function � xð Þ ¼ E Z xð Þ½ � and a
symmetric positive semidefinite covariance function C x; yð Þ ¼ E Z xð Þ � � xð Þð Þ Z yð Þ � � yð Þð Þ½ �. Z xð Þ is a
Gaussian random field if for any choice of n 2 N and x1; . . . ; xn 2 R

2, the random vector

Z x1ð Þ; . . . ; Z xnð Þ½ �T follows a multivariate Normal distribution, which would have a mean vector ~��

with entries ~�i ¼ � xið Þ and a covariance matrix ~C with entries ~Cij ¼ C xi; xj
� �

. A Gaussian random field

Z xð Þ is stationary if � xð Þ is constant for all x 2 R
2 and C x; yð Þ ¼ C xþ a; yþ að Þ for all x; y; a 2 R

2 and
hence we can express the covariance function C x; yð Þ as a function � of one variable:
C x; yð Þ ¼ � x� yð Þ. � is known as a variogram (or more correctly, a semivariogram) and includes the
multiplicative factor �2 representing the variance such that � 0ð Þ ¼ �2.

The routines G05ZQF and G05ZSF are used to simulate a two-dimensional stationary Gaussian random
field, with mean function zero and variogram � xð Þ, over a domain xmin ; xmax½ � � ymin ; ymax½ �, using an
equally spaced set of N1 �N2 points; N1 points in the x-direction and N2 points in the y-direction. The
problem reduces to sampling a Normal random vector X of size N1 �N2, with mean vector zero and a
symmetric covariance matrix A, which is an N2 by N2 block Toeplitz matrix with Toeplitz blocks of size
N1 by N1. Since A is in general expensive to factorize, a technique known as the circulant embedding
method is used. A is embedded into a larger, symmetric matrix B, which is an M2 by M2 block circulant
matrix with circulant blocks of size M1 by M1, where M1 � 2 N1 � 1ð Þ and M2 � 2 N2 � 1ð Þ. B can now
be factorized as B ¼W�W � ¼ R�R, where W is the two-dimensional Fourier matrix (W � is the

complex conjugate of W), � is the diagonal matrix containing the eigenvalues of B and R ¼ �1
2W � . B

is known as the embedding matrix. The eigenvalues can be calculated by performing a discrete Fourier
transform of the first row (or column) of B and multiplying by M1 �M2, and so only the first row (or
column) of B is needed – the whole matrix does not need to be formed.

The symmetry of A as a block matrix, and the symmetry of each block of A, depends on whether the

variogram � is even or not. � is even in its first coordinate if � �x1; x2½ �T
� �

¼ � x1; x2½ �T
� �

, even in its

second coordinate if � x1;�x2½ �T
� �

¼ � x1; x2½ �T
� �

, and even if it is even in both coordinates (in two

dimensions it is impossible for � to be even in one coordinate and uneven in the other). If � is even then

G05 – Random Number Generators G05ZQF

Mark 25 G05ZQF.1

A is a symmetric block matrix and has symmetric blocks; if � is uneven then A is not a symmetric block
matrix and has non-symmetric blocks. In the uneven case, M1 and M2 are set to be odd in order to
guarantee symmetry in B.

As long as all of the values of � are non-negative (i.e., B is positive semidefinite), B is a covariance
matrix for a random vector Y which has M2 blocks of size M1. Two samples of Y can now be simulated
from the real and imaginary parts of R� Uþ iVð Þ, where U and V have elements from the standard

Normal distribution. Since R� Uþ iVð Þ ¼W�
1
2 Uþ iVð Þ , this calculation can be done using a discrete

Fourier transform of the vector �
1
2 Uþ iVð Þ . Two samples of the random vector X can now be recovered

by taking the first N1 elements of the first N2 blocks of each sample of Y – because the original
covariance matrix A is embedded in B, X will have the correct distribution.

If B is not positive semidefinite, larger embedding matrices B can be tried; however if the size of the
matrix would have to be larger than MAXM, an approximation procedure is used. We write
� ¼ �þ þ ��, where �þ and �� contain the non-negative and negative eigenvalues of B respectively.
Then B is replaced by �Bþ where Bþ ¼ W�þW

� and � 2 0; 1ð � is a scaling factor. The error � in
approximating the distribution of the random field is given by

� ¼

ffi
1� �ð Þ2 trace�þ �2 trace��

M

s
:

Three choices for � are available, and are determined by the input parameter ICORR:

setting ICORR ¼ 0 sets

� ¼ trace�

trace�þ
;

setting ICORR ¼ 1 sets

� ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
trace�

trace�þ

s
;

setting ICORR ¼ 2 sets � ¼ 1.

G05ZQF finds a suitable positive semidefinite embedding matrix B and outputs its sizes in the vector M
and the square roots of its eigenvalues in LAM. If approximation is used, information regarding the
accuracy of the approximation is output. Note that only the first row (or column) of B is actually formed
and stored.

4 References

Dietrich C R and Newsam G N (1997) Fast and exact simulation of stationary Gaussian processes
through circulant embedding of the covariance matrix SIAM J. Sci. Comput. 18 1088–1107

Schlather M (1999) Introduction to positive definite functions and to unconditional simulation of random
fields Technical Report ST 99–10 Lancaster University

Wood A T A and Chan G (1994) Simulation of stationary Gaussian processes in 0; 1½ �d Journal of
Computational and Graphical Statistics 3(4) 409–432

5 Parameters

1: NSð2Þ – INTEGER array Input

On entry: the number of sample points to use in each direction, with NSð1Þ sample points in the
x-direction, N1 and NSð2Þ sample points in the y-direction, N2. The total number of sample points
on the grid is therefore NSð1Þ � NSð2Þ.
Constraints:

NSð1Þ � 1;
NSð2Þ � 1.

G05ZQF NAG Library Manual

G05ZQF.2 Mark 25

2: XMIN – REAL (KIND=nag_wp) Input

On entry: the lower bound for the x-coordinate, for the region in which the random field is to be
simulated.

Constraint: XMIN < XMAX.

3: XMAX – REAL (KIND=nag_wp) Input

On entry: the upper bound for the x-coordinate, for the region in which the random field is to be
simulated.

Constraint: XMIN < XMAX.

4: YMIN – REAL (KIND=nag_wp) Input

On entry: the lower bound for the y-coordinate, for the region in which the random field is to be
simulated.

Constraint: YMIN < YMAX.

5: YMAX – REAL (KIND=nag_wp) Input

On entry: the upper bound for the y-coordinate, for the region in which the random field is to be
simulated.

Constraint: YMIN < YMAX.

6: MAXMð2Þ – INTEGER array Input

On entry: determines the maximum size of the circulant matrix to use – a maximum of MAXMð1Þ
elements in the x-direction, and a maximum of MAXMð2Þ elements in the y-direction. The
maximum size of the circulant matrix is thus MAXMð1Þ�MAXMð2Þ.
Constraints:

i f EVEN ¼ 1, MAXMðiÞ � 2k, where k i s the smal les t integer sat isfying
2k � 2 NSðiÞ � 1ð Þ, for i ¼ 1; 2;
i f EVEN ¼ 0, MAXMðiÞ � 3k, where k i s the smal les t integer sat isfying
3k � 2 NSðiÞ � 1ð Þ, for i ¼ 1; 2.

7: VAR – REAL (KIND=nag_wp) Input

On entry: the multiplicative factor �2 of the variogram � xð Þ.
Constraint: VAR � 0:0.

8: COV2 – SUBROUTINE, supplied by the user. External Procedure

COV2 must evaluate the variogram � xð Þ for all x if EVEN ¼ 0, and for all x with non-negative
entries if EVEN ¼ 1. The value returned in GAMMA is multiplied internally by VAR.

The specification of COV2 is:

SUBROUTINE COV2 (X, Y, GAMMA, IUSER, RUSER)

INTEGER IUSER(*)
REAL (KIND=nag_wp) X, Y, GAMMA, RUSER(*)

1: X – REAL (KIND=nag_wp) Input

On entry: the coordinate x at which the variogram � xð Þ is to be evaluated.

2: Y – REAL (KIND=nag_wp) Input

On entry: the coordinate y at which the variogram � xð Þ is to be evaluated.

G05 – Random Number Generators G05ZQF

Mark 25 G05ZQF.3

3: GAMMA – REAL (KIND=nag_wp) Output

On exit: the value of the variogram � xð Þ.

4: IUSERð�Þ – INTEGER array User Workspace
5: RUSERð�Þ – REAL (KIND=nag_wp) array User Workspace

COV2 is called with the parameters IUSER and RUSER as supplied to G05ZQF. You
are free to use the arrays IUSER and RUSER to supply information to COV2 as an
alternative to using COMMON global variables.

COV2 must either be a module subprogram USEd by, or declared as EXTERNAL in, the
(sub)program from which G05ZQF is called. Parameters denoted as Input must not be changed by
this procedure.

9: EVEN – INTEGER Input

On entry: indicates whether the covariance function supplied is even or uneven.

EVEN ¼ 0
The covariance function is uneven.

EVEN ¼ 1
The covariance function is even.

Constraint: EVEN ¼ 0 or 1.

10: PAD – INTEGER Input

On entry: determines whether the embedding matrix is padded with zeros, or padded with values
of the variogram. The choice of padding may affect how big the embedding matrix must be in
order to be positive semidefinite.

PAD ¼ 0
The embedding matrix is padded with zeros.

PAD ¼ 1
The embedding matrix is padded with values of the variogram.

Suggested value: PAD ¼ 1.

Constraint: PAD ¼ 0 or 1.

11: ICORR – INTEGER Input

On entry: determines which approximation to implement if required, as described in Section 3.

Suggested value: ICORR ¼ 0.

Constraint: ICORR ¼ 0, 1 or 2.

12: LAMðMAXMð1Þ �MAXMð2ÞÞ – REAL (KIND=nag_wp) array Output

On exit: contains the square roots of the eigenvalues of the embedding matrix.

13: XXðNSð1ÞÞ – REAL (KIND=nag_wp) array Output

On exit: the points of the x-coordinates at which values of the random field will be output.

14: YYðNSð2ÞÞ – REAL (KIND=nag_wp) array Output

On exit: the points of the y-coordinates at which values of the random field will be output.

15: Mð2Þ – INTEGER array Output

On exit: Mð1Þ contains M1, the size of the circulant blocks and Mð2Þ contains M2, the number of
blocks, resulting in a final square matrix of size M1 �M2.

G05ZQF NAG Library Manual

G05ZQF.4 Mark 25

16: APPROX – INTEGER Output

On exit: indicates whether approximation was used.

APPROX ¼ 0
No approximation was used.

APPROX ¼ 1
Approximation was used.

17: RHO – REAL (KIND=nag_wp) Output

On exit: indicates the scaling of the covariance matrix. RHO ¼ 1:0 unless approximation was used
with ICORR ¼ 0 or 1.

18: ICOUNT – INTEGER Output

On exit: indicates the number of negative eigenvalues in the embedding matrix which have had to
be set to zero.

19: EIGð3Þ – REAL (KIND=nag_wp) array Output

On exit: indicates information about the negative eigenvalues in the embedding matrix which have
had to be set to zero. EIGð1Þ contains the smallest eigenvalue, EIGð2Þ contains the sum of the
squares of the negative eigenvalues, and EIGð3Þ contains the sum of the absolute values of the
negative eigenvalues.

20: IUSERð�Þ – INTEGER array User Workspace
21: RUSERð�Þ – REAL (KIND=nag_wp) array User Workspace

IUSER and RUSER are not used by G05ZQF, but are passed directly to COV2 and may be used
to pass information to this routine as an alternative to using COMMON global variables.

22: IFAIL – INTEGER Input/Output

On entry: IFAIL must be set to 0, �1 or 1. If you are unfamiliar with this parameter you should
refer to Section 3.3 in the Essential Introduction for details.

For environments where it might be inappropriate to halt program execution when an error is
detected, the value �1 or 1 is recommended. If the output of error messages is undesirable, then
the value 1 is recommended. Otherwise, if you are not familiar with this parameter, the
recommended value is 0. When the value �1 or 1 is used it is essential to test the value of
IFAIL on exit.

On exit: IFAIL ¼ 0 unless the routine detects an error or a warning has been flagged (see
Section 6).

6 Error Indicators and Warnings

If on entry IFAIL ¼ 0 or �1, explanatory error messages are output on the current error message unit (as
defined by X04AAF).

Errors or warnings detected by the routine:

IFAIL ¼ 1

On entry, NS ¼ valueh i; valueh i½ �.
Constraint: NSð1Þ � 1, NSð2Þ � 1.

IFAIL ¼ 2

On entry, XMIN ¼ valueh i and XMAX ¼ valueh i.
Constraint: XMIN < XMAX.

G05 – Random Number Generators G05ZQF

Mark 25 G05ZQF.5

IFAIL ¼ 4

On entry, YMIN ¼ valueh i and YMAX ¼ valueh i.
Constraint: YMIN < YMAX.

IFAIL ¼ 6

On entry, MAXM ¼ valueh i; valueh i½ �.
Constraint: the minima for MAXM are valueh i; valueh i½ �.
Where, if EVEN ¼ 1, the minimum calculated value of MAXMðiÞ is given by 2k, where k is the
smallest integer satisfying 2k � 2 NSðiÞ � 1ð Þ, and if EVEN ¼ 0, the minimum calculated value of
MAXMðiÞ is given by 3k, where k is the smallest integer satisfying 3k � 2 NSðiÞ � 1ð Þ, for
i ¼ 1; 2.

IFAIL ¼ 7

On entry, VAR ¼ valueh i.
Constraint: VAR � 0:0.

IFAIL ¼ 9

On entry, EVEN ¼ valueh i.
Constraint: EVEN ¼ 0 or 1.

IFAIL ¼ 10

On entry, PAD ¼ valueh i.
Constraint: PAD ¼ 0 or 1.

IFAIL ¼ 11

On entry, ICORR ¼ valueh i.
Constraint: ICORR ¼ 0, 1 or 2.

IFAIL ¼ �99

An unexpected error has been triggered by this routine. Please contact NAG.

See Section 3.8 in the Essential Introduction for further information.

IFAIL ¼ �399

Your licence key may have expired or may not have been installed correctly.

See Section 3.7 in the Essential Introduction for further information.

IFAIL ¼ �999

Dynamic memory allocation failed.

See Section 3.6 in the Essential Introduction for further information.

7 Accuracy

If on exit APPROX ¼ 1, see the comments in Section 3 regarding the quality of approximation; increase
the values in MAXM to attempt to avoid approximation.

8 Parallelism and Performance

G05ZQF is threaded by NAG for parallel execution in multithreaded implementations of the NAG
Library.

G05ZQF NAG Library Manual

G05ZQF.6 Mark 25

G05ZQF makes calls to BLAS and/or LAPACK routines, which may be threaded within the vendor
library used by this implementation. Consult the documentation for the vendor library for further
information.

Please consult the X06 Chapter Introduction for information on how to control and interrogate the
OpenMP environment used within this routine. Please also consult the Users’ Note for your
implementation for any additional implementation-specific information.

9 Further Comments

None.

10 Example

This example calls G05ZQF to calculate the eigenvalues of the embedding matrix for 25 sample points
on a 5 by 5 grid of a two-dimensional random field characterized by the symmetric stable variogram:

� xð Þ ¼ �2 exp � x0ð Þ�
� �

;

where x0 ¼ x
‘1
þ y

‘2

��� ��� , and ‘1, ‘2 and � are parameters.

It should be noted that the symmetric stable variogram is one of the pre-defined variograms available in
G05ZRF. It is used here purely for illustrative purposes.

10.1 Program Text

! G05ZQF Example Program Text

! Mark 25 Release. NAG Copyright 2014.

Module g05zqfe_mod

! G05ZQF Example Program Module:
! Parameters and User-defined Routines

! .. Use Statements ..
Use nag_library, Only: nag_wp

! .. Implicit None Statement ..
Implicit None

! .. Accessibility Statements ..
Private
Public :: cov2

! .. Parameters ..
Integer, Parameter, Public :: even = 1

Contains
Subroutine cov2(t1,t2,gamma,iuser,ruser)

! .. Implicit None Statement ..
Implicit None

! .. Scalar Arguments ..
Real (Kind=nag_wp), Intent (Out) :: gamma
Real (Kind=nag_wp), Intent (In) :: t1, t2

! .. Array Arguments ..
Real (Kind=nag_wp), Intent (Inout) :: ruser(*)
Integer, Intent (Inout) :: iuser(*)

! .. Local Scalars ..
Real (Kind=nag_wp) :: l1, l2, nu, rnorm, tl1, tl2
Integer :: norm

! .. Intrinsic Procedures ..
Intrinsic :: abs, exp, sqrt

! .. Executable Statements ..
! Covariance parameters stored in ruser array.

norm = iuser(1)
l1 = ruser(1)
l2 = ruser(2)
nu = ruser(3)

G05 – Random Number Generators G05ZQF

Mark 25 G05ZQF.7

tl1 = abs(t1)/l1
tl2 = abs(t2)/l2
If (norm==1) Then

rnorm = tl1 + tl2
Else If (norm==2) Then

rnorm = sqrt(tl1**2+tl2**2)
End If

gamma = exp(-(rnorm**nu))

Return

End Subroutine cov2
End Module g05zqfe_mod

Program g05zqfe

! G05ZQF Example Main Program

! .. Use Statements ..
Use nag_library, Only: g05zqf, nag_wp
Use g05zqfe_mod, Only: cov2, even

! .. Implicit None Statement ..
Implicit None

! .. Parameters ..
Integer, Parameter :: nin = 5, nout = 6

! .. Local Scalars ..
Real (Kind=nag_wp) :: l1, l2, nu, rho, var, xmax, &

xmin, ymax, ymin
Integer :: approx, icorr, icount, ifail, &

norm, pad
! .. Local Arrays ..

Real (Kind=nag_wp) :: eig(3), ruser(3)
Real (Kind=nag_wp), Allocatable :: lam(:), xx(:), yy(:)
Integer :: iuser(1), m(2), maxm(2), ns(2)

! .. Executable Statements ..
Write (nout,*) ’G05ZQF Example Program Results’
Write (nout,*)

! Get problem specifications from data file
Call read_input_data(norm,l1,l2,nu,var,xmin,xmax,ymin,ymax,ns,maxm, &

icorr,pad)

! Put covariance parameters in communication arrays
iuser(1) = norm
ruser(1) = l1
ruser(2) = l2
ruser(3) = nu

Allocate (lam(maxm(1)*maxm(2)),xx(ns(1)),yy(ns(2)))

! Get square roots of the eigenvalues of the embedding matrix
ifail = 0
Call g05zqf(ns,xmin,xmax,ymin,ymax,maxm,var,cov2,even,pad,icorr,lam,xx, &

yy,m,approx,rho,icount,eig,iuser,ruser,ifail)

! Output results
Call display_results(approx,m,rho,eig,icount,lam)

Contains
Subroutine read_input_data(norm,l1,l2,nu,var,xmin,xmax,ymin,ymax,ns, &

maxm,icorr,pad)

! .. Implicit None Statement ..
Implicit None

! .. Scalar Arguments ..
Real (Kind=nag_wp), Intent (Out) :: l1, l2, nu, var, xmax, xmin, &

ymax, ymin
Integer, Intent (Out) :: icorr, norm, pad

! .. Array Arguments ..

G05ZQF NAG Library Manual

G05ZQF.8 Mark 25

Integer, Intent (Out) :: maxm(2), ns(2)
! .. Executable Statements ..
! Skip heading in data file

Read (nin,*)

! Read in norm, l1, l2 and nu for cov2 function
Read (nin,*) norm, l1, l2, nu

! Read in variance of random field
Read (nin,*) var

! Read in domain endpoints
Read (nin,*) xmin, xmax
Read (nin,*) ymin, ymax

! Read in number of sample points in each direction
Read (nin,*) ns(1), ns(2)

! Read in maximum size of embedding matrix
Read (nin,*) maxm(1), maxm(2)

! Read in choice of scaling in case of approximation
Read (nin,*) icorr

! Read in choice of padding
Read (nin,*) pad

Return

End Subroutine read_input_data

Subroutine display_results(approx,m,rho,eig,icount,lam)

! .. Implicit None Statement ..
Implicit None

! .. Scalar Arguments ..
Real (Kind=nag_wp), Intent (In) :: rho
Integer, Intent (In) :: approx, icount

! .. Array Arguments ..
Real (Kind=nag_wp), Intent (In) :: eig(3)
Integer, Intent (In) :: m(2)
Real (Kind=nag_wp), Intent (In) :: lam(m(1),m(2))

! .. Local Scalars ..
Integer :: i

! .. Executable Statements ..
! Display size of embedding matrix

Write (nout,*)
Write (nout,99999) ’Size of embedding matrix = ’, m(1)*m(2)

! Display approximation information if approximation used
Write (nout,*)
If (approx==1) Then

Write (nout,*) ’Approximation required’
Write (nout,*)
Write (nout,99998) ’RHO = ’, rho
Write (nout,99997) ’EIG = ’, eig(1:3)
Write (nout,99999) ’ICOUNT = ’, icount

Else
Write (nout,*) ’Approximation not required’

End If

! Display square roots of the eigenvalues of the embedding matrix
Write (nout,*)
Write (nout,*) ’Square roots of eigenvalues of embedding matrix:’
Write (nout,*)
Do i = 1, m(1)

Write (nout,99996) lam(i,1:m(2))
End Do

Return

G05 – Random Number Generators G05ZQF

Mark 25 G05ZQF.9

99999 Format (1X,A,I7)
99998 Format (1X,A,F10.5)
99997 Format (1X,A,3(F10.5,1X))
99996 Format (1X,8F8.4)

End Subroutine display_results

End Program g05zqfe

10.2 Program Data

G05ZQF Example Program Data
2 0.1 0.15 1.2 : norm, l1, l2, nu
0.5 : var

-1 1 : xmin, xmax
-0.5 0.5 : ymin, ymax
5 5 : ns

81 81 : maxm
2 : icorr
1 : pad

10.3 Program Results

G05ZQF Example Program Results

Size of embedding matrix = 64

Approximation not required

Square roots of eigenvalues of embedding matrix:

0.8966 0.8234 0.6810 0.5757 0.5391 0.5757 0.6810 0.8234
0.8940 0.8217 0.6804 0.5756 0.5391 0.5756 0.6804 0.8217
0.8877 0.8175 0.6792 0.5754 0.5391 0.5754 0.6792 0.8175
0.8813 0.8133 0.6780 0.5751 0.5390 0.5751 0.6780 0.8133
0.8787 0.8116 0.6774 0.5750 0.5390 0.5750 0.6774 0.8116
0.8813 0.8133 0.6780 0.5751 0.5390 0.5751 0.6780 0.8133
0.8877 0.8175 0.6792 0.5754 0.5391 0.5754 0.6792 0.8175
0.8940 0.8217 0.6804 0.5756 0.5391 0.5756 0.6804 0.8217

G05ZQF NAG Library Manual

G05ZQF.10 (last) Mark 25

	G05ZQF
	1 Purpose
	2 Specification
	3 Description
	4 References
	Dietrich and Newsam (1997)
	Schlather (1999)
	Wood and Chan (1994)

	5 Parameters
	NS
	XMIN
	XMAX
	YMIN
	YMAX
	MAXM
	VAR
	COV2
	X
	Y
	GAMMA
	IUSER
	RUSER

	EVEN
	PAD
	ICORR
	LAM
	XX
	YY
	M
	APPROX
	RHO
	ICOUNT
	EIG
	IUSER
	RUSER
	IFAIL

	6 Error Indicators and Warnings
	IFAIL=1
	IFAIL=2
	IFAIL=4
	IFAIL=6
	IFAIL=7
	IFAIL=9
	IFAIL=10
	IFAIL=11
	IFAIL=-99
	IFAIL=-399
	IFAIL=-999

	7 Accuracy
	8 Parallelism and Performance
	9 Further Comments
	10 Example
	10.1 Program Text
	10.2 Program Data
	10.3 Program Results

	NAG Fortran Library Manual, Mark 25
	Copyright Statement
	Foreword
	Introduction
	Essential Introduction
	Mark 25 NAG Fortran Library News
	Multithreaded Routines
	Thread Safety
	Advice on Replacement Calls for Withdrawn/Superseded Routines
	Acknowledgements
	Online Documentation
	Index
	Implementation-specific Details for Users

	Chapters of the Library
	A00 - Library Identification
	A00 Chapter Introduction

	A02 - Complex Arithmetic
	A02 Chapter Introduction

	C02 - Zeros of Polynomials
	C02 Chapter Introduction

	C05 - Roots of One or More Transcendental Equations
	C05 Chapter Introduction

	C06 - Summation of Series
	C06 Chapter Introduction

	C09 - Wavelet Transforms
	C09 Chapter Introduction

	D01 - Quadrature
	D01 Chapter Introduction

	D02 - Ordinary Differential Equations
	D02 Chapter Introduction

	D03 - Partial Differential Equations
	D03 Chapter Introduction

	D04 - Numerical Differentiation
	D04 Chapter Introduction

	D05 - Integral Equations
	D05 Chapter Introduction

	D06 - Mesh Generation
	D06 Chapter Introduction

	E01 - Interpolation
	E01 Chapter Introduction

	E02 - Curve and Surface Fitting
	E02 Chapter Introduction

	E04 - Minimizing or Maximizing a Function
	E04 Chapter Introduction

	E05 - Global Optimization of a Function
	E05 Chapter Introduction

	F - Linear Algebra
	F Chapter Introduction

	F01 - Matrix Operations, Including Inversion
	F01 Chapter Introduction

	F02 - Eigenvalues and Eigenvectors
	F02 Chapter Introduction

	F03 - Determinants
	F03 Chapter Introduction

	F04 - Simultaneous Linear Equations
	F04 Chapter Introduction

	F05 - Orthogonalization
	F05 Chapter Introduction

	F06 - Linear Algebra Support Routines
	F06 Chapter Introduction

	F07 - Linear Equations (LAPACK)
	F07 Chapter Introduction

	F08 - Least Squares and Eigenvalue Problems (LAPACK)
	F08 Chapter Introduction

	F11 - Large Scale Linear Systems
	F11 Chapter Introduction

	F12 - Large Scale Eigenproblems
	F12 Chapter Introduction

	F16 - Further Linear Algebra Support Routines
	F16 Chapter Introduction

	G01 - Simple Calculations on Statistical Data
	G01 Chapter Introduction

	G02 - Correlation and Regression Analysis
	G02 Chapter Introduction

	G03 - Multivariate Methods
	G03 Chapter Introduction

	G04 - Analysis of Variance
	G04 Chapter Introduction

	G05 - Random Number Generators
	G05 Chapter Introduction

	G07 - Univariate Estimation
	G07 Chapter Introduction

	G08 - Nonparametric Statistics
	G08 Chapter Introduction

	G10 - Smoothing in Statistics
	G10 Chapter Introduction

	G11 - Contingency Table Analysis
	G11 Chapter Introduction

	G12 - Survival Analysis
	G12 Chapter Introduction

	G13 - Time Series Analysis
	G13 Chapter Introduction

	H - Operations Research
	H Chapter Introduction

	M01 - Sorting and Searching
	M01 Chapter Introduction

	S - Approximations of Special Functions
	S Chapter Introduction

	X01 - Mathematical Constants
	X01 Chapter Introduction

	X02 - Machine Constants
	X02 Chapter Introduction

	X03 - Inner Products
	X03 Chapter Introduction

	X04 - Input/Output Utilities
	X04 Chapter Introduction

	X05 - Date and Time Utilities
	X05 Chapter Introduction

	X06 - OpenMP Utilities
	X06 Chapter Introduction

	X07 - IEEE Arithmetic
	X07 Chapter Introduction

