Program f08csfe

!     F08CSF Example Program Text

!     Mark 26 Release. NAG Copyright 2016.

!     .. Use Statements ..
      Use nag_library, Only: dznrm2, nag_wp, x04dbf, zgeqlf, ztrtrs, zunmql
!     .. Implicit None Statement ..
      Implicit None
!     .. Parameters ..
      Integer, Parameter               :: nb = 64, nin = 5, nout = 6
!     .. Local Scalars ..
      Integer                          :: i, ifail, info, j, lda, ldb, lwork,  &
                                          m, n, nrhs
!     .. Local Arrays ..
      Complex (Kind=nag_wp), Allocatable :: a(:,:), b(:,:), tau(:), work(:)
      Real (Kind=nag_wp), Allocatable  :: rnorm(:)
      Character (1)                    :: clabs(1), rlabs(1)
!     .. Executable Statements ..
      Write (nout,*) 'F08CSF Example Program Results'
      Write (nout,*)
      Flush (nout)
!     Skip heading in data file
      Read (nin,*)
      Read (nin,*) m, n, nrhs
      lda = m
      ldb = m
      lwork = nb*n
      Allocate (a(lda,n),b(ldb,nrhs),tau(n),work(lwork),rnorm(nrhs))

!     Read A and B from data file

      Read (nin,*)(a(i,1:n),i=1,m)
      Read (nin,*)(b(i,1:nrhs),i=1,m)

!     Compute the QL factorization of A
!     The NAG name equivalent of zgeqlf is f08csf
      Call zgeqlf(m,n,a,lda,tau,work,lwork,info)

!     Compute C = (C1) = (Q**H)*B, storing the result in B
!                  (C2)
!     The NAG name equivalent of zunmql is f08cuf
      Call zunmql('Left','Conjugate Transpose',m,nrhs,n,a,lda,tau,b,ldb,work,  &
        lwork,info)

!     Compute least squares solutions by back-substitution in
!     L*X = C2
!     The NAG name equivalent of ztrtrs is f07tsf
      Call ztrtrs('Lower','No transpose','Non-Unit',n,nrhs,a(m-n+1,1),lda,     &
        b(m-n+1,1),ldb,info)

      If (info>0) Then
        Write (nout,*) 'The lower triangular factor, L, of A is singular, '
        Write (nout,*) 'the least squares solution could not be computed'
      Else

!       Print least squares solution(s)

!       ifail: behaviour on error exit
!              =0 for hard exit, =1 for quiet-soft, =-1 for noisy-soft
        ifail = 0
        Call x04dbf('General',' ',n,nrhs,b(m-n+1,1),ldb,'Bracketed','F7.4',    &
          'Least squares solution(s)','Integer',rlabs,'Integer',clabs,80,0,    &
          ifail)

!       Compute and print estimates of the square roots of the residual
!       sums of squares
!       The NAG name equivalent of dznrm2 is f06jjf
        Do j = 1, nrhs
          rnorm(j) = dznrm2(m-n,b(1,j),1)
        End Do

        Write (nout,*)
        Write (nout,*) 'Square root(s) of the residual sum(s) of squares'
        Write (nout,99999) rnorm(1:nrhs)
      End If

99999 Format (3X,1P,7E11.2)
    End Program f08csfe