F08 Chapter Contents
F08 Chapter Introduction
NAG Library Manual

# NAG Library Routine DocumentF08XPF (ZGGESX)

Note:  before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms and other implementation-dependent details.

## 1  Purpose

F08XPF (ZGGESX) computes the generalized eigenvalues, the generalized Schur form $\left(S,T\right)$ and, optionally, the left and/or right generalized Schur vectors for a pair of $n$ by $n$ complex nonsymmetric matrices $\left(A,B\right)$.
Estimates of condition numbers for selected generalized eigenvalue clusters and Schur vectors are also computed.

## 2  Specification

 SUBROUTINE F08XPF ( JOBVSL, JOBVSR, SORT, SELCTG, SENSE, N, A, LDA, B, LDB, SDIM, ALPHA, BETA, VSL, LDVSL, VSR, LDVSR, RCONDE, RCONDV, WORK, LWORK, RWORK, IWORK, LIWORK, BWORK, INFO)
 INTEGER N, LDA, LDB, SDIM, LDVSL, LDVSR, LWORK, IWORK(max(1,LIWORK)), LIWORK, INFO REAL (KIND=nag_wp) RCONDE(2), RCONDV(2), RWORK(max(1,8*N)) COMPLEX (KIND=nag_wp) A(LDA,*), B(LDB,*), ALPHA(N), BETA(N), VSL(LDVSL,*), VSR(LDVSR,*), WORK(max(1,LWORK)) LOGICAL SELCTG, BWORK(*) CHARACTER(1) JOBVSL, JOBVSR, SORT, SENSE EXTERNAL SELCTG
The routine may be called by its LAPACK name zggesx.

## 3  Description

The generalized Schur factorization for a pair of complex matrices $\left(A,B\right)$ is given by
 $A = QSZH , B = QTZH ,$
where $Q$ and $Z$ are unitary, $T$ and $S$ are upper triangular. The generalized eigenvalues, $\lambda$, of $\left(A,B\right)$ are computed from the diagonals of $T$ and $S$ and satisfy
 $Az = λBz ,$
where $z$ is the corresponding generalized eigenvector. $\lambda$ is actually returned as the pair $\left(\alpha ,\beta \right)$ such that
 $λ = α/β$
since $\beta$, or even both $\alpha$ and $\beta$ can be zero. The columns of $Q$ and $Z$ are the left and right generalized Schur vectors of $\left(A,B\right)$.
Optionally, F08XPF (ZGGESX) can order the generalized eigenvalues on the diagonals of $\left(S,T\right)$ so that selected eigenvalues are at the top left. The leading columns of $Q$ and $Z$ then form an orthonormal basis for the corresponding eigenspaces, the deflating subspaces.
F08XPF (ZGGESX) computes $T$ to have real non-negative diagonal entries. The generalized Schur factorization, before reordering, is computed by the $QZ$ algorithm.
The reciprocals of the condition estimates, the reciprocal values of the left and right projection norms, are returned in ${\mathbf{RCONDE}}\left(1\right)$ and ${\mathbf{RCONDE}}\left(2\right)$ respectively, for the selected generalized eigenvalues, together with reciprocal condition estimates for the corresponding left and right deflating subspaces, in ${\mathbf{RCONDV}}\left(1\right)$ and ${\mathbf{RCONDV}}\left(2\right)$. See Section 4.11 of Anderson et al. (1999) for further information.

## 4  References

Anderson E, Bai Z, Bischof C, Blackford S, Demmel J, Dongarra J J, Du Croz J J, Greenbaum A, Hammarling S, McKenney A and Sorensen D (1999) LAPACK Users' Guide (3rd Edition) SIAM, Philadelphia http://www.netlib.org/lapack/lug
Golub G H and Van Loan C F (1996) Matrix Computations (3rd Edition) Johns Hopkins University Press, Baltimore

## 5  Arguments

1:     $\mathrm{JOBVSL}$ – CHARACTER(1)Input
On entry: if ${\mathbf{JOBVSL}}=\text{'N'}$, do not compute the left Schur vectors.
If ${\mathbf{JOBVSL}}=\text{'V'}$, compute the left Schur vectors.
Constraint: ${\mathbf{JOBVSL}}=\text{'N'}$ or $\text{'V'}$.
2:     $\mathrm{JOBVSR}$ – CHARACTER(1)Input
On entry: if ${\mathbf{JOBVSR}}=\text{'N'}$, do not compute the right Schur vectors.
If ${\mathbf{JOBVSR}}=\text{'V'}$, compute the right Schur vectors.
Constraint: ${\mathbf{JOBVSR}}=\text{'N'}$ or $\text{'V'}$.
3:     $\mathrm{SORT}$ – CHARACTER(1)Input
On entry: specifies whether or not to order the eigenvalues on the diagonal of the generalized Schur form.
${\mathbf{SORT}}=\text{'N'}$
Eigenvalues are not ordered.
${\mathbf{SORT}}=\text{'S'}$
Eigenvalues are ordered (see SELCTG).
Constraint: ${\mathbf{SORT}}=\text{'N'}$ or $\text{'S'}$.
4:     $\mathrm{SELCTG}$ – LOGICAL FUNCTION, supplied by the user.External Procedure
If ${\mathbf{SORT}}=\text{'S'}$, SELCTG is used to select generalized eigenvalues to be moved to the top left of the generalized Schur form.
If ${\mathbf{SORT}}=\text{'N'}$, SELCTG is not referenced by F08XPF (ZGGESX), and may be called with the dummy function F08XNZ.
The specification of SELCTG is:
 FUNCTION SELCTG ( A, B)
 LOGICAL SELCTG
 COMPLEX (KIND=nag_wp) A, B
1:     $\mathrm{A}$ – COMPLEX (KIND=nag_wp)Input
2:     $\mathrm{B}$ – COMPLEX (KIND=nag_wp)Input
On entry: an eigenvalue ${\mathbf{A}}\left(j\right)/{\mathbf{B}}\left(j\right)$ is selected if ${\mathbf{SELCTG}}\left({\mathbf{A}}\left(j\right),{\mathbf{B}}\left(j\right)\right)$ is .TRUE..
Note that in the ill-conditioned case, a selected generalized eigenvalue may no longer satisfy ${\mathbf{SELCTG}}\left({\mathbf{A}}\left(j\right),{\mathbf{B}}\left(j\right)\right)=\mathrm{.TRUE.}$ after ordering. ${\mathbf{INFO}}=\mathbf{N}+{\mathbf{2}}$ in this case.
SELCTG must either be a module subprogram USEd by, or declared as EXTERNAL in, the (sub)program from which F08XPF (ZGGESX) is called. Arguments denoted as Input must not be changed by this procedure.
5:     $\mathrm{SENSE}$ – CHARACTER(1)Input
On entry: determines which reciprocal condition numbers are computed.
${\mathbf{SENSE}}=\text{'N'}$
None are computed.
${\mathbf{SENSE}}=\text{'E'}$
Computed for average of selected eigenvalues only.
${\mathbf{SENSE}}=\text{'V'}$
Computed for selected deflating subspaces only.
${\mathbf{SENSE}}=\text{'B'}$
Computed for both.
If ${\mathbf{SENSE}}=\text{'E'}$, $\text{'V'}$ or $\text{'B'}$, ${\mathbf{SORT}}=\text{'S'}$.
Constraint: ${\mathbf{SENSE}}=\text{'N'}$, $\text{'E'}$, $\text{'V'}$ or $\text{'B'}$.
6:     $\mathrm{N}$ – INTEGERInput
On entry: $n$, the order of the matrices $A$ and $B$.
Constraint: ${\mathbf{N}}\ge 0$.
7:     $\mathrm{A}\left({\mathbf{LDA}},*\right)$ – COMPLEX (KIND=nag_wp) arrayInput/Output
Note: the second dimension of the array A must be at least $\mathrm{max}\phantom{\rule{0.125em}{0ex}}\left(1,{\mathbf{N}}\right)$.
On entry: the first of the pair of matrices, $A$.
On exit: A has been overwritten by its generalized Schur form $S$.
8:     $\mathrm{LDA}$ – INTEGERInput
On entry: the first dimension of the array A as declared in the (sub)program from which F08XPF (ZGGESX) is called.
Constraint: ${\mathbf{LDA}}\ge \mathrm{max}\phantom{\rule{0.125em}{0ex}}\left(1,{\mathbf{N}}\right)$.
9:     $\mathrm{B}\left({\mathbf{LDB}},*\right)$ – COMPLEX (KIND=nag_wp) arrayInput/Output
Note: the second dimension of the array B must be at least $\mathrm{max}\phantom{\rule{0.125em}{0ex}}\left(1,{\mathbf{N}}\right)$.
On entry: the second of the pair of matrices, $B$.
On exit: B has been overwritten by its generalized Schur form $T$.
10:   $\mathrm{LDB}$ – INTEGERInput
On entry: the first dimension of the array B as declared in the (sub)program from which F08XPF (ZGGESX) is called.
Constraint: ${\mathbf{LDB}}\ge \mathrm{max}\phantom{\rule{0.125em}{0ex}}\left(1,{\mathbf{N}}\right)$.
11:   $\mathrm{SDIM}$ – INTEGEROutput
On exit: if ${\mathbf{SORT}}=\text{'N'}$, ${\mathbf{SDIM}}=0$.
If ${\mathbf{SORT}}=\text{'S'}$, ${\mathbf{SDIM}}=\text{}$ number of eigenvalues (after sorting) for which SELCTG is .TRUE..
12:   $\mathrm{ALPHA}\left({\mathbf{N}}\right)$ – COMPLEX (KIND=nag_wp) arrayOutput
On exit: see the description of BETA.
13:   $\mathrm{BETA}\left({\mathbf{N}}\right)$ – COMPLEX (KIND=nag_wp) arrayOutput
On exit: ${\mathbf{ALPHA}}\left(\mathit{j}\right)/{\mathbf{BETA}}\left(\mathit{j}\right)$, for $\mathit{j}=1,2,\dots ,{\mathbf{N}}$, will be the generalized eigenvalues. ${\mathbf{ALPHA}}\left(j\right)$ and ${\mathbf{BETA}}\left(j\right),j=1,2,\dots ,{\mathbf{N}}$ are the diagonals of the complex Schur form $\left(S,T\right)$. ${\mathbf{BETA}}\left(j\right)$ will be non-negative real.
Note:  the quotients ${\mathbf{ALPHA}}\left(j\right)/{\mathbf{BETA}}\left(j\right)$ may easily overflow or underflow, and ${\mathbf{BETA}}\left(j\right)$ may even be zero. Thus, you should avoid naively computing the ratio $\alpha /\beta$. However, ALPHA will always be less than and usually comparable with $‖{\mathbf{A}}‖$ in magnitude, and BETA will always be less than and usually comparable with $‖{\mathbf{B}}‖$.
14:   $\mathrm{VSL}\left({\mathbf{LDVSL}},*\right)$ – COMPLEX (KIND=nag_wp) arrayOutput
Note: the second dimension of the array VSL must be at least $\mathrm{max}\phantom{\rule{0.125em}{0ex}}\left(1,{\mathbf{N}}\right)$ if ${\mathbf{JOBVSL}}=\text{'V'}$, and at least $1$ otherwise.
On exit: if ${\mathbf{JOBVSL}}=\text{'V'}$, VSL will contain the left Schur vectors, $Q$.
If ${\mathbf{JOBVSL}}=\text{'N'}$, VSL is not referenced.
15:   $\mathrm{LDVSL}$ – INTEGERInput
On entry: the first dimension of the array VSL as declared in the (sub)program from which F08XPF (ZGGESX) is called.
Constraints:
• if ${\mathbf{JOBVSL}}=\text{'V'}$, ${\mathbf{LDVSL}}\ge \mathrm{max}\phantom{\rule{0.125em}{0ex}}\left(1,{\mathbf{N}}\right)$;
• otherwise ${\mathbf{LDVSL}}\ge 1$.
16:   $\mathrm{VSR}\left({\mathbf{LDVSR}},*\right)$ – COMPLEX (KIND=nag_wp) arrayOutput
Note: the second dimension of the array VSR must be at least $\mathrm{max}\phantom{\rule{0.125em}{0ex}}\left(1,{\mathbf{N}}\right)$ if ${\mathbf{JOBVSR}}=\text{'V'}$, and at least $1$ otherwise.
On exit: if ${\mathbf{JOBVSR}}=\text{'V'}$, VSR will contain the right Schur vectors, $Z$.
If ${\mathbf{JOBVSR}}=\text{'N'}$, VSR is not referenced.
17:   $\mathrm{LDVSR}$ – INTEGERInput
On entry: the first dimension of the array VSR as declared in the (sub)program from which F08XPF (ZGGESX) is called.
Constraints:
• if ${\mathbf{JOBVSR}}=\text{'V'}$, ${\mathbf{LDVSR}}\ge \mathrm{max}\phantom{\rule{0.125em}{0ex}}\left(1,{\mathbf{N}}\right)$;
• otherwise ${\mathbf{LDVSR}}\ge 1$.
18:   $\mathrm{RCONDE}\left(2\right)$ – REAL (KIND=nag_wp) arrayOutput
On exit: if ${\mathbf{SENSE}}=\text{'E'}$ or $\text{'B'}$, ${\mathbf{RCONDE}}\left(1\right)$ and ${\mathbf{RCONDE}}\left(2\right)$ contain the reciprocal condition numbers for the average of the selected eigenvalues.
If ${\mathbf{SENSE}}=\text{'N'}$ or $\text{'V'}$, RCONDE is not referenced.
19:   $\mathrm{RCONDV}\left(2\right)$ – REAL (KIND=nag_wp) arrayOutput
On exit: if ${\mathbf{SENSE}}=\text{'V'}$ or $\text{'B'}$, ${\mathbf{RCONDV}}\left(1\right)$ and ${\mathbf{RCONDV}}\left(2\right)$ contain the reciprocal condition numbers for the selected deflating subspaces.
if ${\mathbf{SENSE}}=\text{'N'}$ or $\text{'E'}$, RCONDV is not referenced.
20:   $\mathrm{WORK}\left(\mathrm{max}\phantom{\rule{0.125em}{0ex}}\left(1,{\mathbf{LWORK}}\right)\right)$ – COMPLEX (KIND=nag_wp) arrayWorkspace
On exit: if ${\mathbf{INFO}}={\mathbf{0}}$, the real part of ${\mathbf{WORK}}\left(1\right)$ contains a bound on the value of LWORK required for optimal performance.
21:   $\mathrm{LWORK}$ – INTEGERInput
On entry: the dimension of the array WORK as declared in the (sub)program from which F08XPF (ZGGESX) is called.
If ${\mathbf{LWORK}}=-1$, a workspace query is assumed; the routine only calculates the bound on the optimal size of the WORK array and the minimum size of the IWORK array, returns these values as the first entries of the WORK and IWORK arrays, and no error message related to LWORK or LIWORK is issued.
Constraints:
• if ${\mathbf{N}}=0$, ${\mathbf{LWORK}}\ge 1$;
• if ${\mathbf{SENSE}}=\text{'E'}$, $\text{'V'}$ or $\text{'B'}$, ${\mathbf{LWORK}}\ge \mathrm{max}\phantom{\rule{0.125em}{0ex}}\left(1,2×{\mathbf{N}},2×{\mathbf{SDIM}}×\left({\mathbf{N}}-{\mathbf{SDIM}}\right)\right)$;
• otherwise ${\mathbf{LWORK}}\ge \mathrm{max}\phantom{\rule{0.125em}{0ex}}\left(1,2×{\mathbf{N}}\right)$.
Note: $2×{\mathbf{SDIM}}×\left({\mathbf{N}}-{\mathbf{SDIM}}\right)\le {\mathbf{N}}×{\mathbf{N}}/2$. Note also that an error is only returned if ${\mathbf{LWORK}}<\mathrm{max}\phantom{\rule{0.125em}{0ex}}\left(1,2×{\mathbf{N}}\right)$, but if ${\mathbf{SENSE}}=\text{'E'}$, $\text{'V'}$ or $\text{'B'}$ this may not be large enough. Consider increasing LWORK by $\mathit{nb}$, where $\mathit{nb}$ is the optimal block size.
22:   $\mathrm{RWORK}\left(\mathrm{max}\phantom{\rule{0.125em}{0ex}}\left(1,8×{\mathbf{N}}\right)\right)$ – REAL (KIND=nag_wp) arrayWorkspace
Real workspace.
23:   $\mathrm{IWORK}\left(\mathrm{max}\phantom{\rule{0.125em}{0ex}}\left(1,{\mathbf{LIWORK}}\right)\right)$ – INTEGER arrayWorkspace
On exit: if ${\mathbf{INFO}}={\mathbf{0}}$, ${\mathbf{IWORK}}\left(1\right)$ returns the minimum LIWORK.
24:   $\mathrm{LIWORK}$ – INTEGERInput
On entry: the dimension of the array IWORK as declared in the (sub)program from which F08XPF (ZGGESX) is called.
If ${\mathbf{LIWORK}}=-1$, a workspace query is assumed; the routine only calculates the bound on the optimal size of the WORK array and the minimum size of the IWORK array, returns these values as the first entries of the WORK and IWORK arrays, and no error message related to LWORK or LIWORK is issued.
Constraints:
• if ${\mathbf{SENSE}}=\text{'N'}$ or ${\mathbf{N}}=0$, ${\mathbf{LIWORK}}\ge 1$;
• otherwise ${\mathbf{LIWORK}}\ge {\mathbf{N}}+2$.
25:   $\mathrm{BWORK}\left(*\right)$ – LOGICAL arrayWorkspace
Note: the dimension of the array BWORK must be at least $1$ if ${\mathbf{SORT}}=\text{'N'}$, and at least $\mathrm{max}\phantom{\rule{0.125em}{0ex}}\left(1,{\mathbf{N}}\right)$ otherwise.
If ${\mathbf{SORT}}=\text{'N'}$, BWORK is not referenced.
26:   $\mathrm{INFO}$ – INTEGEROutput
On exit: ${\mathbf{INFO}}=0$ unless the routine detects an error (see Section 6).

## 6  Error Indicators and Warnings

${\mathbf{INFO}}<0$
If ${\mathbf{INFO}}=-i$, argument $i$ had an illegal value. An explanatory message is output, and execution of the program is terminated.
${\mathbf{INFO}}=1 \text{to} {\mathbf{N}}$
The $QZ$ iteration failed. $\left(A,B\right)$ are not in Schur form, but ${\mathbf{ALPHA}}\left(j\right)$ and ${\mathbf{BETA}}\left(j\right)$ should be correct for $j={\mathbf{INFO}}+1,\dots ,{\mathbf{N}}$.
${\mathbf{INFO}}={\mathbf{N}}+1$
Unexpected error returned from F08XSF (ZHGEQZ).
${\mathbf{INFO}}={\mathbf{N}}+2$
After reordering, roundoff changed values of some complex eigenvalues so that leading eigenvalues in the generalized Schur form no longer satisfy ${\mathbf{SELCTG}}=\mathrm{.TRUE.}$. This could also be caused by underflow due to scaling.
${\mathbf{INFO}}={\mathbf{N}}+3$
The eigenvalues could not be reordered because some eigenvalues were too close to separate (the problem is very ill-conditioned).

## 7  Accuracy

The computed generalized Schur factorization satisfies
 $A+E = QS ZT , B+F = QT ZT ,$
where
 $E,F F = Oε A,B F$
and $\epsilon$ is the machine precision. See Section 4.11 of Anderson et al. (1999) for further details.

## 8  Parallelism and Performance

F08XPF (ZGGESX) is threaded by NAG for parallel execution in multithreaded implementations of the NAG Library.
F08XPF (ZGGESX) makes calls to BLAS and/or LAPACK routines, which may be threaded within the vendor library used by this implementation. Consult the documentation for the vendor library for further information.
Please consult the X06 Chapter Introduction for information on how to control and interrogate the OpenMP environment used within this routine. Please also consult the Users' Note for your implementation for any additional implementation-specific information.

## 9  Further Comments

The total number of floating-point operations is proportional to ${n}^{3}$.
The real analogue of this routine is F08XBF (DGGESX).

## 10  Example

This example finds the generalized Schur factorization of the matrix pair $\left(A,B\right)$, where
 $A = -21.10-22.50i 53.50-50.50i -34.50+127.50i 7.50+00.50i -0.46-07.78i -3.50-37.50i -15.50+058.50i -10.50-01.50i 4.30-05.50i 39.70-17.10i -68.50+012.50i -7.50-03.50i 5.50+04.40i 14.40+43.30i -32.50-046.00i -19.00-32.50i$
and
 $B = 1.00-5.00i 1.60+1.20i -3.00+0.00i 0.00-1.00i 0.80-0.60i 3.00-5.00i -4.00+3.00i -2.40-3.20i 1.00+0.00i 2.40+1.80i -4.00-5.00i 0.00-3.00i 0.00+1.00i -1.80+2.40i 0.00-4.00i 4.00-5.00i ,$
such that the eigenvalues of $\left(A,B\right)$ for which $\left|\lambda \right|<6$ correspond to the top left diagonal elements of the generalized Schur form, $\left(S,T\right)$. Estimates of the condition numbers for the selected eigenvalue cluster and corresponding deflating subspaces are also returned.
Note that the block size (NB) of $64$ assumed in this example is not realistic for such a small problem, but should be suitable for large problems.

### 10.1  Program Text

Program Text (f08xpfe.f90)

### 10.2  Program Data

Program Data (f08xpfe.d)

### 10.3  Program Results

Program Results (f08xpfe.r)