NAG Library Routine Document
 D05ABF

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details. and other implementation-dependent details.

1 Purpose

D05ABF solves any linear nonsingular Fredholm integral equation of the second kind with a smooth kernel.

2 Specification

```
SUBROUTINE D05ABF (K, G, LAMBDA, A, B, ODOREV, EV, N, CM, F1, WK, LDCM,
        NT2P1, F, C, IFAIL)
INTEGER N, LDCM, NT2P1, IFAIL
REAL (KIND=nag_wp) K, G, LAMBDA, A, B, CM(LDCM,LDCM), F1(LDCM,1), &
LOGICAL ODOREV, EV
EXTERNAL K, G
```


3 Description

D05ABF uses the method of El-Gendi (1969) to solve an integral equation of the form

$$
f(x)-\lambda \int_{a}^{b} k(x, s) f(s) d s=g(x)
$$

for the function $f(x)$ in the range $a \leq x \leq b$.
An approximation to the solution $f(x)$ is found in the form of an n term Chebyshev series $\sum_{i=1}^{n} c_{i} T_{i}(x)$, where ' indicates that the first term is halved in the sum. The coefficients c_{i}, for $i=1,2, \ldots, n$, of this series are determined directly from approximate values f_{i}, for $i=1,2, \ldots, n$, of the function $f(x)$ at the first n of a set of $m+1$ Chebyshev points

$$
x_{i}=\frac{1}{2}(a+b+(b-a) \times \cos [(i-1) \times \pi / m]), \quad i=1,2, \ldots, m+1 .
$$

The values f_{i} are obtained by solving a set of simultaneous linear algebraic equations formed by applying a quadrature formula (equivalent to the scheme of Clenshaw and Curtis (1960)) to the integral equation at each of the above points.
In general $m=n-1$. However, advantage may be taken of any prior knowledge of the symmetry of $f(x)$. Thus if $f(x)$ is symmetric (i.e., even) about the mid-point of the range (a, b), it may be approximated by an even Chebyshev series with $m=2 n-1$. Similarly, if $f(x)$ is anti-symmetric (i.e., odd) about the mid-point of the range of integration, it may be approximated by an odd Chebyshev series with $m=2 n$.

4 References

Clenshaw C W and Curtis A R (1960) A method for numerical integration on an automatic computer Numer. Math. 2 197-205

El-Gendi S E (1969) Chebyshev solution of differential, integral and integro-differential equations Comput. J. 12 282-287

5 Arguments

1: $\quad \mathrm{K}-$ REAL (KIND=nag_wp) FUNCTION, supplied by the user.
External Procedure
K must compute the value of the kernel $k(x, s)$ of the integral equation over the square $a \leq x \leq b, a \leq s \leq b$.

```
The specification of K is:
FUNCTION K (X, S)
REAL (KIND=nag_wp) K
REAL (KIND=nag_wp) X, S
    X - REAL (KIND=nag_wp) Input
    S - REAL (KIND=nag_wp) Input
    On entry: the values of }x\mathrm{ and }s\mathrm{ at which }k(x,s)\mathrm{ is to be calculated.
```

K must either be a module subprogram USEd by, or declared as EXTERNAL in, the (sub) program from which D05ABF is called. Arguments denoted as Input must not be changed by this procedure.

2: $\quad \mathrm{G}-\mathrm{REAL}(\mathrm{KIND}=$ nag_wp) FUNCTION, supplied by the user.
External Procedure
G must compute the value of the function $g(x)$ of the integral equation in the interval $a \leq x \leq b$.

```
The specification of G is:
FUNCTION G (X)
REAL (KIND=nag_wp) G
REAL (KIND=nag_wp) X
1: X - REAL (KIND=nag_wp) Input
    On entry: the value of }x\mathrm{ at which }g(x)\mathrm{ is to be calculated.
```

G must either be a module subprogram USEd by, or declared as EXTERNAL in, the (sub) program from which D05ABF is called. Arguments denoted as Input must not be changed by this procedure.

3: LAMBDA - REAL (KIND=nag_wp)
Input
On entry: the value of the parameter λ of the integral equation.
4: A - REAL (KIND=nag_wp) Input
On entry: a, the lower limit of integration.
5: $\quad \mathrm{B}-\mathrm{REAL}(\mathrm{KIND}=$ nag_wp)
Input
On entry: b, the upper limit of integration.
Constraint: B > A.
6: ODOREV - LOGICAL
On entry: indicates whether it is known that the solution $f(x)$ is odd or even about the mid-point of the range of integration. If ODOREV is .TRUE. then an odd or even solution is sought depending upon the value of EV.

7: EV - LOGICAL
Input
On entry: is ignored if ODOREV is .FALSE.. Otherwise, if EV is .TRUE., an even solution is sought, whilst if EV is .FALSE., an odd solution is sought.

8: $\quad \mathrm{N}$ - INTEGER
Input
On entry: the number of terms in the Chebyshev series which approximates the solution $f(x)$.
Constraint: $\mathrm{N} \geq 1$.
9: $\mathrm{CM}(\mathrm{LDCM}, \mathrm{LDCM})-$ REAL (KIND=$=$ nag_wp) array Workspace
10: F1 (LDCM, 1) - REAL (KIND=nag_wp) array Workspace
11: $\mathrm{WK}(2, \mathrm{NT} 2 \mathrm{P} 1)-\mathrm{REAL}(\mathrm{KIND}=$ nag_wp $)$ array Workspace
12: LDCM - INTEGER Input
On entry: the first dimension of the arrays CM and F1 and the second dimension of the array CM as declared in the (sub)program from which D05ABF is called.
Constraint: $\mathrm{LDCM} \geq \mathrm{N}$.
13: NT2P1 - INTEGER
Input
On entry: the second dimension of the array WK as declared in the (sub)program from which D 05 ABF is called. The value $2 \times \mathrm{N}+1$.

14: $\quad \mathrm{F}(\mathrm{N})-\mathrm{REAL}(\mathrm{KIND}=$ nag_wp) array
Output
On exit: the approximate values f_{i}, for $i=1,2, \ldots, \mathrm{~N}$, of the function $f(x)$ at the first N of $m+1$ Chebyshev points (see Section 3), where
$m=2 \mathrm{~N}-1$ if ODOREV $=$.TRUE. and $\mathrm{EV}=$. TRUE..
$m=2 \mathrm{~N} \quad$ if ODOREV $=$. TRUE. and $\mathrm{EV}=$. FALSE..
$m=\mathrm{N}-1$ if ODOREV $=$.FALSE..

15: $\quad \mathrm{C}(\mathrm{N})$ - REAL (KIND=nag_wp) array
Output
On exit: the coefficients c_{i}, for $i=1,2, \ldots, \mathrm{~N}$, of the Chebyshev series approximation to $f(x)$. When ODOREV is .TRUE., this series contains polynomials of even order only or of odd order only, according to EV being .TRUE. or .FALSE. respectively.

16: IFAIL - INTEGER
Input/Output
On entry: IFAIL must be set to $0,-1$ or 1 . If you are unfamiliar with this argument you should refer to Section 3.4 in How to Use the NAG Library and its Documentation for details.
For environments where it might be inappropriate to halt program execution when an error is detected, the value -1 or 1 is recommended. If the output of error messages is undesirable, then the value 1 is recommended. Otherwise, if you are not familiar with this argument, the recommended value is 0 . When the value -1 or 1 is used it is essential to test the value of IFAIL on exit.

On exit: IFAIL $=0$ unless the routine detects an error or a warning has been flagged (see Section 6).

6 Error Indicators and Warnings

If on entry IFAIL $=0$ or -1 , explanatory error messages are output on the current error message unit (as defined by X04AAF).
Errors or warnings detected by the routine:
IFAIL $=1$
On entry, $\mathrm{A} \geq \mathrm{B}$ or $\mathrm{N}<1$.

IFAIL $=2$
A failure has occurred due to proximity to an eigenvalue. In general, if LAMBDA is near an eigenvalue of the integral equation, the corresponding matrix will be nearly singular. In the special case, $m=1$, the matrix reduces to a zero-valued number.

IFAIL $=-99$
An unexpected error has been triggered by this routine. Please contact NAG.
See Section 3.9 in How to Use the NAG Library and its Documentation for further information.

IFAIL $=-399$

Your licence key may have expired or may not have been installed correctly.
See Section 3.8 in How to Use the NAG Library and its Documentation for further information.
IFAIL $=-999$
Dynamic memory allocation failed.
See Section 3.7 in How to Use the NAG Library and its Documentation for further information.

7 Accuracy

No explicit error estimate is provided by the routine but it is possible to obtain a good indication of the accuracy of the solution either
(i) by examining the size of the later Chebyshev coefficients c_{i}, or
(ii) by comparing the coefficients c_{i} or the function values f_{i} for two or more values of N .

8 Parallelism and Performance

D05ABF is threaded by NAG for parallel execution in multithreaded implementations of the NAG Library.

D05ABF makes calls to BLAS and/or LAPACK routines, which may be threaded within the vendor library used by this implementation. Consult the documentation for the vendor library for further information.
Please consult the X06 Chapter Introduction for information on how to control and interrogate the OpenMP environment used within this routine. Please also consult the Users' Note for your implementation for any additional implementation-specific information.

9 Further Comments

The time taken by D05ABF depends upon the value of N and upon the complexity of the kernel function $k(x, s)$.

10 Example

This example solves Love's equation:

$$
f(x)+\frac{1}{\pi} \int_{-1}^{1} \frac{f(s)}{1+(x-s)^{2}} d s=1
$$

It will solve the slightly more general equation:

$$
f(x)-\lambda \int_{a}^{b} k(x, s) f(s) d s=1
$$

where $k(x, s)=\alpha /\left(\alpha^{2}+(x-s)^{2}\right)$. The values $\lambda=-1 / \pi, a=-1, b=1, \alpha=1$ are used below.

It is evident from the symmetry of the given equation that $f(x)$ is an even function. Advantage is taken of this fact both in the application of D 05 ABF , to obtain the $f_{i} \simeq f\left(x_{i}\right)$ and the c_{i}, and in subsequent applications of C06DCF to obtain $f(x)$ at selected points.
The program runs for $\mathrm{N}=5$ and $\mathrm{N}=10$.

10.1 Program Text

D05ABF Example Program Text
Mark 26 Release. NAG Copyright 2016.
Module dO5abfe_mod
D05ABF Example Program Module: Parameters and User-defined Routines
.. Use Statements ..
Use nag_library, Only: nag_wp
.. Implicit None Statement ..
Implicit None
.. Accessibility Statements ..
Private
Public : : g, k
.. Parameters ..
Integer, Parameter, Public : \quad nmax $=10$, nout $=6$
Contains
Function $k(x, s)$
! .. Function Return Value ..
Real (Kind=nag_wp) : : k
Real (Kind=nag_wp), Parameter : alpha = 1.0_nag_wp
Real (Kind=nag_wp), Parameter : : w = alpha**2
! .. Scalar Arguments ..
Real (Kind=nag_wp), Intent (In) : : s, x
.. Executable Statements ..
$\mathrm{k}=\mathrm{alpha} /(\mathrm{w}+(\mathrm{x}-\mathrm{s}) *(\mathrm{x}-\mathrm{s}))$
Return
End Function k
Function $g(x)$
! .. Function Return Value ..
Real (Kind=nag_wp) : : g
.. Scalar Arguments ..
Real (Kind=nag_wp), Intent (In) : : x
.. Executable Statements ..
g = 1.0_nag_wp
Return
End Function g
End Module d05abfe_mod
Program d05abfe
! D05ABF Example Main Program
! .. Use Statements ..
Use nag_library, Only: c06dcf, d05abf, nag_wp, x0laaf
Use d05abfe_mod, Only: g, k, nmax, nout
.. Implicit None Statement ..
Implicit None
! .. Local Scalars .
Real (Kind=nag_wp) : : a, b, lambda, x0
Integer : : i, ifail, ldcm, lx, $n, n t 2 p 1, ~ s s$
Logical :: ev, odorev
! .. Local Arrays ..
Real (Kind=nag_wp), Allocatable : : c(:), chebr(:), cm(:,:), f(:), f1(:,:), wk(:,:), x(:)
! .. Intrinsic Procedures ..
Intrinsic : : cos, int, real

```
!
! Set up uniform grid to evaluate Chebyshev polynomials.
    lx = int(4.000001_nag_wp*(b-x0)) + 1
    Allocate (x(lx),chebr(lx))
    x(1) = x0
    Do i = 2, lx
    x(i) = x(i-1) + 0.25_nag_wp
    End Do
    Do n = 5, nmax, 5
    ldcm = n
    nt2p1 = 2*n + 1
    Allocate (c(n),cm(ldcm,ldcm),f(n),f1(ldcm,1),wk(2,nt2p1))
    ifail = -1
    Call d05abf(k,g,lambda,a,b,odorev,ev,n,cm,f1,wk,ldcm,nt2p1,f,c,ifail)
    If (ifail==0) Then
        Write (nout,*)
        Write (nout,99999) 'Results for N =', n
        Write (nout,*)
        Write (nout,99996) 'Solution on first ', n,
            ' Chebyshev points and Chebyshev coefficients'
        Write (nout,*) I X F(I) C(I)'
        Write (nout,99998)(i,cos(x0laaf(a)*real(i,kind=nag_wp)/real(2*n-1, &
            kind=nag_wp)),f(i),c(i),i=1,n)
        Evaluate and print solution on uniform grid.
        ifail = 0
        Call c06dcf(x,lx,a,b,c,n,ss,chebr,ifail)
        Write (nout,*)
        Write (nout,*) 'Solution on evenly spaced grid'
        Write (nout,*) ' X F(X)'
        Write (nout,99997)(x(i), chebr(i),i=1,lx)
    End If
    Deallocate (c,cm,f,f1,wk)
    End Do
    Deallocate (x,chebr)
99999 Format (1X,A,I3)
99998 Format (1X,I3,2F15.5,E15.5)
99997 Format (1X,F8.4,F15.5)
99996 Format (1X,A,I2,A)
End Program d05abfe
```


10.2 Program Data

None.

10.3 Program Results

