NAG Library Routine Document
 E02ZAF

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms and other implementation-dependent details.

1 Purpose

E02ZAF sorts two-dimensional data into rectangular panels.

2 Specification

```
SUBROUTINE EO2ZAF (PX, PY, LAMDA, MU, M, X, Y, POINT, NPOINT, ADRES,
    NADRES, IFAIL)
INTEGER PX, PY, M, POINT(NPOINT), NPOINT, ADRES(NADRES),
    NADRES, IFAIL
REAL (KIND=nag_wp) LAMDA(PX), MU(PY), X(M), Y(M)
```


3 Description

A set of m data points with rectangular Cartesian coordinates x_{r}, y_{r} are sorted into panels defined by lines parallel to the y and x axes. The intercepts of these lines on the x and y axes are given in LAMDA (i), for $i=5,6, \ldots, \mathrm{PX}-4$ and $\mathrm{MU}(j)$, for $j=5,6, \ldots, \mathrm{PY}-4$, respectively. The subroutine orders the data so that all points in a panel occur before data in succeeding panels, where the panels are numbered from bottom to top and then left to right, with the usual arrangement of axes, as shown in the diagram. Within a panel the points maintain their original order.

Figure 1

A data point lying exactly on one or more panel sides is taken to be in the highest-numbered panel adjacent to the point. The subroutine does not physically rearrange the data, but provides the array POINT which contains a linked list for each panel, pointing to the data in that panel. The total number of panels is $(\mathrm{PX}-7) \times(\mathrm{PY}-7)$.

4 References

None.

5 Arguments

1: PX - INTEGER Input
2: PY - INTEGER Input
On entry: PX and PY must specify eight more than the number of intercepts on the x axis and y axis, respectively.
Constraint: $\mathrm{PX} \geq 8$ and $\mathrm{PY} \geq 8$.
3: \quad LAMDA $(P X)$ - REAL (KIND=nag_wp) array
Input
On entry: LAMDA(5) to LAMDA(PX -4) must contain, in nondecreasing order, the intercepts on the x axis of the sides of the panels parallel to the y axis.

4: $\mathrm{MU}(\mathrm{PY})$ - REAL (KIND=nag_wp) array Input
On entry: $\mathrm{MU}(5)$ to $\mathrm{MU}(\mathrm{PY}-4)$ must contain, in nondecreasing order, the intercepts on the y axis of the sides of the panels parallel to the x axis.

5: M - INTEGER Input
On entry: the number m of data points.
6: $\mathrm{X}(\mathrm{M})$ - REAL (KIND=nag_wp) array Input
7: $\mathrm{Y}(\mathrm{M})$ - REAL (KIND=nag_wp) array Input
On entry: the coordinates of the r th data point $\left(x_{r}, y_{r}\right)$, for $r=1,2, \ldots, m$.
8: POINT(NPOINT) - INTEGER array
Output
On exit: for $i=1,2, \ldots$, NPOINT, POINT $(m+i)=\mathrm{I} 1$ is the index of the first point in panel i, $\operatorname{POINT}(\mathrm{I} 1)=\mathrm{I} 2$ is the index of the second point in panel i and so on.
POINT(In) $=0$ indicates that $\mathrm{X}(\mathrm{In}), \mathrm{Y}(\mathrm{In})$ was the last point in the panel.
The coordinates of points in panel i can be accessed in turn by means of the following instructions:

```
IN = M + I
    10 IN = POINT(IN)
    IF (IN.EQ. O) GOTO 20
XI = X(IN)
YI = Y(IN)
    GOTO 10
20 ...
```

9: NPOINT - INTEGER
On entry: the dimension of the array POINT as declared in the (sub)program from which E02ZAF is called.

Constraint: $\mathrm{NPOINT} \geq \mathrm{M}+(\mathrm{PX}-7) \times(\mathrm{PY}-7)$.
$\begin{array}{llr}\text { 10: } & \text { ADRES(NADRES) - INTEGER array } & \text { Workspace } \\ \text { 11: } & \text { NADRES - INTEGER } & \text { Input }\end{array}$
On entry: the value $(\mathrm{PX}-7) \times(\mathrm{PY}-7)$, the number of panels into which the (x, y) plane is divided.

12: IFAIL - INTEGER
Input/Output
On entry: IFAIL must be set to $0,-1$ or 1 . If you are unfamiliar with this argument you should refer to Section 3.4 in How to Use the NAG Library and its Documentation for details.

For environments where it might be inappropriate to halt program execution when an error is detected, the value -1 or 1 is recommended. If the output of error messages is undesirable, then the value 1 is recommended. Otherwise, if you are not familiar with this argument, the recommended value is 0 . When the value -1 or 1 is used it is essential to test the value of IFAIL on exit.

On exit: IFAIL $=0$ unless the routine detects an error or a warning has been flagged (see Section 6).

6 Error Indicators and Warnings

If on entry IFAIL $=0$ or -1 , explanatory error messages are output on the current error message unit (as defined by X04AAF).

Errors or warnings detected by the routine:
IFAIL $=1$
The intercepts in the array LAMDA, or in the array MU, are not in nondecreasing order.

IFAIL $=2$

On entry, $\mathrm{PX}<8$,
or $\quad \mathrm{PY}<8$,
or $\quad M \leq 0$,
or \quad NADRES $\neq(\mathrm{PX}-7) \times(\mathrm{PY}-7)$,
or \quad NPOINT $<M+(P X-7) \times(P Y-7)$.
IFAIL $=-99$
An unexpected error has been triggered by this routine. Please contact NAG.
See Section 3.9 in How to Use the NAG Library and its Documentation for further information.
IFAIL $=-399$
Your licence key may have expired or may not have been installed correctly.
See Section 3.8 in How to Use the NAG Library and its Documentation for further information.
IFAIL $=-999$
Dynamic memory allocation failed.
See Section 3.7 in How to Use the NAG Library and its Documentation for further information.

7 Accuracy

Not applicable.

8 Parallelism and Performance

E02ZAF is not threaded in any implementation.

9 Further Comments

The time taken is approximately proportional to $m \times \log$ (NPOINT).
This subroutine was written to sort two-dimensional data in the manner required by routine E02DAF. The first 9 arguments of E02ZAF are the same as the arguments in E02DAF which have the same name.

10 Example

This example reads in data points and the intercepts of the panel sides on the x and y axes; it calls E02ZAF to set up the index array POINT; and finally it prints the data points in panel order.

10.1 Program Text

```
    Program e02zafe
    EO2ZAF Example Program Text
    Mark 26 Release. NAG Copyright 2016.
    .. Use Statements ..
    Use nag_library, Only: e02zaf, nag_wp
! .. Implicit None Statement ..
    Implicit None
! .. Parameters ..
    Integer, Parameter :: nin = 5, nout = 6
! .. Local Scalars ..
    Integer :: i, iadres, ifail, m, nadres, npoint, &
    .. Local Arrays ..
    Real (Kind=nag_wp), Allocatable :: lamda(:), mu(:), x(:), y(:)
    Integer, Allocatable :: adres(:), point(:)
! .. Executable Statements ..
    Write (nout,*) 'EO2ZAF Example Program Results'
! Skip heading in data file
    Read (nin,*)
    Read (nin,*) m
    Read (nin,*) px, py
    nadres = (px-7)*(py-7)
    npoint = m + nadres
    Allocate (adres(nadres),lamda(px),mu(py),x(m),y(m),point(npoint))
! Read data points and intercepts of panel sides
    Read (nin,*)(x(i),y(i),i=1,m)
    If (px>8) Then
        Read (nin,*) lamda(5:(px-4))
    End If
    If (py>8) Then
        Read (nin,*) mu(5:(py-4))
    End If
! Sort points into panel order
    ifail = 0
    Call e02zaf(px,py,lamda,mu,m,x,y,point,npoint,adres,nadres,ifail)
! Output points in panel order
    Do i = 1, nadres
        Write (nout,*)
        Write (nout,99999) 'Panel', i
        iadres = m + i
```

```
loop: Do
            iadres = point(iadres)
            If (iadres<=0) Then
                Exit loop
                End If
                Write (nout,99998) x(iadres), y(iadres)
            End Do loop
        End Do
99999 Format (1X,A,I4)
99998 Format (1X,2F7.2)
    End Program eO2zafe
```


10.2 Program Data

```
EO2ZAF Example Program Data
    10
    9
    10
0 0.77
0.70 1.06
1.44 0.33
0.21 0.44
1.01 0.50
1.84 0.02
0.71 1.95
1.00 1.20
0.54 0.04
1.53 0.18
1.00
0.80
1.20
O
\begin{tabular}{cc} 
E02ZAF & Example Program Data \\
10 & \\
9 & \\
10 & \\
0 & 0.77 \\
0.70 & 1.06 \\
1.44 & 0.33 \\
0.21 & 0.44 \\
1.01 & 0.50 \\
1.84 & 0.02 \\
0.71 & 1.95 \\
1.00 & 1.20 \\
0.54 & 0.04 \\
1.53 & 0.18 \\
1.00 & \\
0.80 &
\end{tabular}
```


10.3 Program Results

```
EO2ZAF Example Program Results
Panel 1
    0.00 0.77
    0.21 0.44
    0.54 0.04
Panel 2
    0.70 1.06
Panel 3
        0.71 1.95
Panel 4
        1.44 0.33
        1.01 0.50
        1.84 0.02
        1.53 0.18
Panel 5
Panel 6
    1.00 1.20
```

