NAG Library Routine Document
 E04PCF

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms and other implementation-dependent details.

1 Purpose

E04PCF solves a linear least squares problem subject to fixed lower and upper bounds on the variables.

2 Specification

```
SUBROUTINE EO4PCF (ITYPE, M, N, A, LDA, B, BL, BU, TOL, X, RNORM, NFREE,
    W, INDX, IFAIL)
INTEGER ITYPE, M, N, LDA, NFREE, INDX(N), IFAIL
REAL (KIND=nag_wp) A(LDA,*), B(M), BL(N), BU(N), TOL, X(N), RNORM, W(N)
```


3 Description

Given an m by n matrix A, an n-vector l of lower bounds, an n-vector u of upper bounds, and an m-vector b, E04PCF computes an n-vector x that solves the least squares problem $A x=b$ subject to x_{i} satisfying $l_{i} \leq x_{i} \leq u_{i}$.

A facility is provided to return a 'regularized' solution, which will closely approximate a minimal length solution whenever A is not of full rank. A minimal length solution is the solution to the problem which has the smallest Euclidean norm.
The algorithm works by applying orthogonal transformations to the matrix and to the right hand side to obtain within the matrix an upper triangular matrix R. In general the elements of x corresponding to the columns of R will be the candidate nonzero solutions. If a diagonal element of R is small compared to the other members of R then this is undesirable. R will be nearly singular and the equations for x thus ill-conditioned. You may specify the tolerance used to determine the relative linear dependence of a column vector for a variable moved from its initial value.

4 References

Lawson C L and Hanson R J (1974) Solving Least Squares Problems Prentice-Hall

5 Arguments

1: ITYPE - INTEGER Input
On entry: provides the choice of returning a regularized solution if the matrix is not of full rank.
ITYPE $=0$
Specifies that a regularized solution is to be computed.
ITYPE $=1$
Specifies that no regularization is to take place.
Suggested value: unless there is a definite need for a minimal length solution we recommend that ITYPE $=1$ is used.

Constraint: ITYPE $=0$ or 1 .
2: M - INTEGER Input
On entry: m, the number of linear equations.
Constraint: $\mathrm{M} \geq 0$.

3: $\quad \mathrm{N}$ - INTEGER
Input
On entry: n, the number of variables.
Constraint: $\mathrm{N} \geq 0$.
4: $\mathrm{A}(\mathrm{LDA}, *)-$ REAL (KIND=$=$ nag_wp) array
Input/Output
Note: the second dimension of the array A must be at least N .
On entry: the m by n matrix A.
On exit: if ITYPE $=1$, A contains the product matrix $Q A$, where Q is an m by m orthogonal matrix generated by E04PCF; otherwise A is unchanged.

5: LDA - INTEGER
Input
On entry: the first dimension of the array A as declared in the (sub)program from which E04PCF is called.
Constraint: LDA $\geq \mathrm{M}$.
6: $\quad \mathrm{B}(\mathrm{M})-\mathrm{REAL}(\mathrm{KIND}=$ nag_wp $)$ array
Input/Output
On entry: the right-hand side vector b.
On exit: if ITYPE $=1$, the product of Q times the original vector b, where Q is as described in argument A ; otherwise B is unchanged.

7: $\quad \mathrm{BL}(\mathrm{N})$ - REAL (KIND=nag_wp) array Input
8: $\quad \mathrm{BU}(\mathrm{N})-\mathrm{REAL}(\mathrm{KIND}=$ nag_wp) array Input

On entry: $\mathrm{BL}(i)$ and $\mathrm{BU}(i)$ must specify the lower and upper bounds, l_{i} and u_{i} respectively, to be imposed on the solution vector x_{i}.
Constraint: $\mathrm{BL}(i) \leq \mathrm{BU}(i)$, for $i=1,2, \ldots, \mathrm{~N}$.
9: \quad TOL - REAL (KIND=nag_wp)
Input
On entry: TOL specifies a parameter used to determine the relative linear dependence of a column vector for a variable moved from its initial value. It determines the computational rank of the matrix. Increasing its value from $\sqrt{\text { machine precision }}$ will increase the likelihood of additional elements of x being set to zero. It may be worth experimenting with increasing values of TOL to determine whether the nature of the solution, x, changes significantly. In practice a value of $\sqrt{\text { machine precision }}$ is recommended (see X02AJF).
If on entry $\mathrm{TOL}<\sqrt{\text { machine precision }}$, then $\sqrt{\text { machine precision }}$ is used.
Suggested value: $\mathrm{TOL}=0.0$
10: $\quad \mathrm{X}(\mathrm{N})$ - REAL (KIND=nag_wp) array
Output
On exit: the solution vector x.
11: RNORM - REAL (KIND=nag_wp)
Output
On exit: the Euclidean norm of the residual vector $b-A x$.

12: NFREE - INTEGER
Output
On exit: indicates the number of components of the solution vector that are not at one of the constraints.

On exit: contains the dual solution vector. The magnitude of $\mathrm{W}(i)$ gives a measure of the improvement in the objective value if the corresponding bound were to be relaxed so that x_{i} could take different values.

A value of $\mathrm{W}(i)$ equal to the special value -999.0 is indicative of the matrix A not having full rank. It is only likely to occur when ITYPE $=1$. However a matrix may have less than full rank without $\mathrm{W}(i)$ being set to -999.0 . If ITYPE $=1$ then the values contained in W (other than those set to -999.0) may be unreliable; the corresponding values in INDX may likewise be unreliable. If you have any doubts set ITYPE $=0$. Otherwise the values of $\mathrm{W}(i)$ have the following meaning:
$\mathrm{W}(i)=0$ if x_{i} is unconstrained.
$\mathrm{W}(i)<0$ if x_{i} is constrained by its lower bound.
$\mathrm{W}(i)>0$ if x_{i} is constrained by its upper bound.

W(i)
may be any value if $l_{i}=u_{i}$.
14: $\quad \operatorname{INDX}(\mathrm{N})$ - INTEGER array
Output
On exit: the contents of this array describe the components of the solution vector as follows:
$\operatorname{INDX}(i)$, for $i=1,2, \ldots$, NFREE
These elements of the solution have not hit a constraint; i.e., $\mathrm{W}(i)=0$.
$\operatorname{INDX}(i)$, for $i=\operatorname{NFREE}+1, \ldots, k$
These elements of the solution have been constrained by either the lower or upper bound.
$\operatorname{INDX}(i)$, for $i=k+1, \ldots, \mathrm{~N}$
These elements of the solution are fixed by the bounds; i.e., $\mathrm{BL}(i)=\mathrm{BU}(i)$.
Here k is determined from NFREE and the number of fixed components. (Often the latter will be 0 , so k will be $\mathrm{N}-$ NFREE.)

15: IFAIL - INTEGER
Input/Output
On entry: IFAIL must be set to $0,-1$ or 1 . If you are unfamiliar with this argument you should refer to Section 3.4 in How to Use the NAG Library and its Documentation for details.
For environments where it might be inappropriate to halt program execution when an error is detected, the value -1 or 1 is recommended. If the output of error messages is undesirable, then the value 1 is recommended. Otherwise, because for this routine the values of the output arguments may be useful even if IFAIL $\neq 0$ on exit, the recommended value is -1 . When the value -1 or 1 is used it is essential to test the value of IFAIL on exit.

On exit: IFAIL $=0$ unless the routine detects an error or a warning has been flagged (see Section 6).

6 Error Indicators and Warnings

If on entry IFAIL $=0$ or -1 , explanatory error messages are output on the current error message unit (as defined by X04AAF).
Note: E04PCF may return useful information for one or more of the following detected errors or warnings.

Errors or warnings detected by the routine:
IFAIL $=1$
On entry, $\mathrm{M}=\langle$ value \rangle.
Constraint: $\mathrm{M} \geq 0$.
On entry, $\mathrm{M}=\langle$ value \rangle and $\mathrm{LDA}=\langle$ value \rangle.
Constraint: $\mathrm{LDA} \geq \mathrm{M}$.
On entry, $\mathrm{N}=\langle$ value \rangle.
Constraint: $\mathrm{N} \geq 0$.
On entry, when $i=\langle$ value $\rangle, \mathrm{BL}(i)=\langle$ value \rangle and $\mathrm{BU}(i)=\langle$ value \rangle.
Constraint: $\mathrm{BL}(i) \leq \mathrm{BU}(i)$.
IFAIL $=2$
The routine failed to converge in $3 \times n$ iterations. This is not expected. Please contact NAG.
IFAIL $=-99$
An unexpected error has been triggered by this routine. Please contact NAG.
See Section 3.9 in How to Use the NAG Library and its Documentation for further information.
IFAIL $=-399$
Your licence key may have expired or may not have been installed correctly.
See Section 3.8 in How to Use the NAG Library and its Documentation for further information.
IFAIL $=-999$
Dynamic memory allocation failed.
See Section 3.7 in How to Use the NAG Library and its Documentation for further information.

$7 \quad$ Accuracy

Orthogonal rotations are used.

8 Parallelism and Performance

E04PCF makes calls to BLAS and/or LAPACK routines, which may be threaded within the vendor library used by this implementation. Consult the documentation for the vendor library for further information.
Please consult the X06 Chapter Introduction for information on how to control and interrogate the OpenMP environment used within this routine. Please also consult the Users' Note for your implementation for any additional implementation-specific information.

9 Further Comments

If either M or N is zero on entry then E04PCF sets IFAIL $=0$ and simply returns without setting any other output arguments.

10 Example

The example minimizes $\|A x-b\|_{2}$ where

$$
A=\left(\begin{array}{rrrr}
0.05 & 0.05 & 0.25 & -0.25 \\
0.25 & 0.25 & 0.05 & -0.05 \\
0.35 & 0.35 & 1.75 & -1.75 \\
1.75 & 1.75 & 0.35 & -0.35 \\
0.30 & -0.30 & 0.30 & 0.30 \\
0.40 & -0.40 & 0.40 & 0.40
\end{array}\right)
$$

and

$$
b=\left(\begin{array}{llllll}
1.0 & 2.0 & 3.0 & 4.0 & 5.0 & 6.0
\end{array}\right)^{\mathrm{T}}
$$

subject to $1 \leq x \leq 5$.

10.1 Program Text

Program e04pcfe
E04PCF Example Program Text
Mark 26 Release. NAG Copyright 2016.
.. Use Statements ..
Use nag_library, Only: e04pcf, nag_wp
.. Implicit None Statement ..
Implicit None
! .. Parameters ..
Real (Kind=nag_wp), Parameter : tol = 0.0_nag_wp
Integer, Parameter : itype $=1$, nin $=5$, nout $=6$
.. Local Scalars ..
Real (Kind=nag_wp) : : rnorm
Integer : : i, ifail, lda, lw, m, n, nfree
.. Local Arrays ..
Real (Kind=nag_wp), Allocatable : : a(:,:), b(:), bl(:), bu(:), w(:), \& x (:)
Integer, Allocatable : : indx(:)
.. Executable Statements ..
Write (nout,*) 'EO4PCF Example Program Results'
Write (nout,*)
Skip heading in data file
Read (nin,*)
Read (nin,*) m, n
lda $=$ m
lw $=\mathrm{n}$
Allocate (a(lda,n),b(m),w(lw),bl(n),bu(n),x(n))
Allocate (indx(n))
Read (nin,*) (a(i,1:n),i=1,m)
Read (nin,*) b(1:m)
Read (nin,*) bl(1:n)
Read (nin,*) bu(1:n)
ifail = 0
Call e04pcf(itype,m,n,a,lda,b,bl,bu,tol, x, rnorm, nfree, w,indx,ifail)
Write (nout, 99999) 'Solution vector', $x(1: n)$
Write (nout,*)
Write (nout,99999) 'Dual Solution', w(1:n)
Write (nout,*)
Write (nout, 99998) 'Residual', rnorm
99999 Format (1X,A,/,1X,8F9.4)
99998 Format (1X,A,1X,1F9.4)
End Program e04pcfe

10.2 Program Data

E04PCF Example Program								
64							m , n	
0.05	0.05	0.25	-0.25					
0.25	0.25	0.05	-0.05					
0.35	0.35	1.75	-1.75					
1.75	1.75	0.35	-0.35					
0.30	-0.30	0.30	0.30					
0.40	-0.40	0.40	0.40			:	matrix	A
1.0	2.0	3.0	4.0	5.0	6.0	:	vector	B
1.0	1.0	1.0	1.0				Lower b	bounds
5.0	5.0	5.0	5.0				Upper b	bounds

10.3 Program Results

Solution vector		
1.81331 .0000	5.0000	4.3467
Dual Solution		
$0.0000-2.7200$	2.7200	0.0000
Residual 3.4246		

