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1 Scope of the Chapter

This chapter is concerned with the orthogonalization of vectors in a finite dimensional space.

2 Background to the Problems

Let a1; a2; . . . ; an be a set of n linearly independent vectors in m-dimensional space; m � n.

We wish to construct a set of n vectors q1; q2; . . . ; qn such that:

– the vectors qif g form an orthonormal set; that is, qTi qj ¼ 0 for i 6¼ j, and qik k2 ¼ 1;

– each ai is linearly dependent on the set qif g.

2.1 Gram–Schmidt Orthogonalization

The classical Gram–Schmidt orthogonalization process is described in many textbooks; see for example
Chapter 5 of Golub and Van Loan (1996).

It constructs the orthonormal set progressively. Suppose it has computed orthonormal vectors
q1; q2; . . . ; qk which orthogonalise the first k vectors a1; a2; . . . ; ak. It then uses akþ1 to compute qkþ1 as
follows:

zkþ1 ¼ akþ1 �
Xk

i¼1

qTi akþ1

� �
qi

qkþ1 ¼ zkþ1= zkþ1k k2:
In finite precision computation, this process can result in a set of vectors qif g which are far from being
orthogonal. This is caused by zkþ1j j being small compared with akþ1j j. If this situation is detected, it
can be remedied by reorthogonalising the computed qkþ1 against q1; q2; . . . ; qk, that is, repeating the
process with the computed qkþ1 instead of akþ1. See Danial et al. (1976).

2.2 Householder Orthogonalization

An alternative approach to orthogonalising a set of vectors is based on the QR factorization (see the
F08 Chapter Introduction), which is usually performed by Householder's method. See Chapter 5 of
Golub and Van Loan (1996).

Let A be the m by n matrix whose columns are the n vectors to be orthogonalised. The QR
factorization gives

A ¼ QR

where R is an n by n upper triangular matrix and Q is an m by n matrix, whose columns are the
required orthonormal set.

Moreover, for any k such that 1 � k � n, the first k columns of Q are an orthonormal basis for the first
k columns of A.

Householder's method requires twice as much work as the Gram–Schmidt method, provided that no re-
orthogonalization is required in the latter. However, it has satisfactory numerical properties and yields
vectors which are close to orthogonality even when the original vectors ai are close to being linearly
dependent.

3 Recommendations on Choice and Use of Available Routines

The single routine in this chapter, F05AAF, uses the Gram–Schmidt method, with re-orthogonalization
to ensure that the computed vectors are close to being exactly orthogonal. This method is only available
for real vectors.

To apply Householder's method, you must use routines in Chapter F08:

for real vectors: F08AEF (DGEQRF), followed by F08AFF (DORGQR)

for complex vectors: F08ASF (ZGEQRF), followed by F08ATF (ZUNGQR)
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The example programs for F08AEF (DGEQRF) or F08ASF (ZGEQRF) illustrate the necessary calls to
these routines.

4 Routines Withdrawn or Scheduled for Withdrawal

None.

5 References

Danial J W, Gragg W B, Kaufman L and Stewart G W (1976) Reorthogonalization and stable
algorithms for updating the Gram–Schmidt QR factorization Math. Comput. 30 772–795

Golub G H and Van Loan C F (1996) Matrix Computations (3rd Edition) Johns Hopkins University
Press, Baltimore
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