NAG Library Routine Document
 F06TPF

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

F06TPF performs a $Q R$ factorization (as a sequence of plane rotations) of a complex upper triangular matrix that has been modified by a rank-1 update.

2 Specification

```
SUBROUTINE F06TPF (N, ALPHA, X, INCX, Y, INCY, A, LDA, C, S)
INTEGER N, INCX, INCY, LDA
REAL (KIND=nag_wp) C(N-1)
COMPLEX (KIND=nag_wp) ALPHA, X(*), Y(*), A(LDA,*), S(N)
```


3 Description

F06TPF performs a $Q R$ factorization of an upper triangular matrix which has been modified by a rank-1 update:

$$
\alpha x y^{\mathrm{T}}+U=Q R
$$

where U and R are n by n complex upper triangular matrices with real diagonal elements, x and y are n-element complex vectors, α is a complex scalar, and Q is an n by n complex unitary matrix.
Q is formed as the product of two sequences of plane rotations and a unitary diagonal matrix D :

$$
Q^{\mathrm{H}}=D Q_{n-1} \cdots Q_{2} Q_{1} P_{1} P_{2} \cdots P_{n-1}
$$

where
P_{k} is a rotation in the (k, n) plane, chosen to annihilate x_{k} : thus $P x=\beta e_{n}$, where $P=P_{1} P_{2} \cdots P_{n-1}$ and e_{n} is the last column of the unit matrix;
Q_{k} is a rotation in the (k, n) plane, chosen to annihilate the (n, k) element of $\left(\alpha \beta e_{n} y^{\mathrm{T}}+P U\right)$, and thus restore it to upper triangular form;
$D=\operatorname{diag}\left(1, \ldots, 1, d_{n}\right)$, with d_{n} chosen to make $r_{n n}$ real; $\left|d_{n}\right|=1$.
The 2 by 2 plane rotation part of P_{k} or Q_{k} has the form

$$
\left(\begin{array}{rr}
c_{k} & \bar{s}_{k} \\
-s_{k} & c_{k}
\end{array}\right)
$$

with c_{k} real. The tangents of the rotations P_{k} are returned in the array X ; the cosines and sines of these rotations can be recovered by calling F06BCF. The cosines and sines of the rotations Q_{k} are returned directly in the arrays C and S .

4 References

None.

5 Arguments

1: $\quad \mathrm{N}$ - INTEGER
Input
On entry: n, the order of the matrices U and R.
Constraint: $\mathrm{N} \geq 0$.

2: ALPHA - COMPLEX (KIND=nag_wp)
Input
On entry: the scalar α.
3: $\quad \mathrm{X}(*)-$ COMPLEX (KIND=nag_wp) array
Input/Output
Note: the dimension of the array X must be at least $\max (1,1+(\mathrm{N}-1) \times \mathrm{INCX})$.
On entry: the n-element vector $x . x_{i}$ must be stored in $\mathrm{X}(1+(i-1) \times \mathrm{INCX})$, for $i=1,2, \ldots, \mathrm{~N}$.
Intermediate elements of X are not referenced.
On exit: the referenced elements are overwritten by details of the sequence of plane rotations.
4: INCX - INTEGER
Input
On entry: the increment in the subscripts of X between successive elements of x.
Constraint: INCX >0.
5: $\quad \mathrm{Y}(*)$ - COMPLEX (KIND=nag_wp) array
Input
Note: the dimension of the array Y must be at least $\max (1,1+(\mathrm{N}-1) \times \mathrm{INCY})$.
On entry: the n-element vector y. y_{i} must be stored in $\mathrm{Y}(1+(i-1) \times \mathrm{INCY})$, for $i=1,2, \ldots, \mathrm{~N}$. Intermediate elements of Y are not referenced.

6: INCY - INTEGER
Input
On entry: the increment in the subscripts of Y between successive elements of y.
Constraint: INCY >0.
$\mathrm{A}(\mathrm{LDA}, *)$ - COMPLEX (KIND=$=$ nag_wp) array
Input/Output
Note: the second dimension of the array A must be at least N .
On entry: the n by n upper triangular matrix U. The imaginary parts of the diagonal elements must be zero.
On exit: the upper triangular matrix R. The imaginary parts of the diagonal elements must be zero.

8: LDA - INTEGER
Input
On entry: the first dimension of the array A as declared in the (sub)program from which F06TPF is called.
Constraint: $\mathrm{LDA} \geq \max (1, \mathrm{~N})$.
$\mathrm{C}(\mathrm{N}-1)$ - REAL (KIND=nag_wp) array
Output
On exit: the cosines of the rotations Q_{k}, for $k=1,2, \ldots, n-1$.
10: $\quad \mathrm{S}(\mathrm{N})$ - COMPLEX (KIND=nag_wp) array
Output
On exit: the sines of the rotations Q_{k}, for $k=1,2, \ldots, n-1 ; \mathrm{S}(n)$ holds d_{n}, the nth diagonal element of D.

6 Error Indicators and Warnings

None.

7 Accuracy

Not applicable.

8 Parallelism and Performance

F06TPF makes calls to BLAS and/or LAPACK routines, which may be threaded within the vendor library used by this implementation. Consult the documentation for the vendor library for further information.
Please consult the X06 Chapter Introduction for information on how to control and interrogate the OpenMP environment used within this routine. Please also consult the Users' Note for your implementation for any additional implementation-specific information.

9 Further Comments

None.

10 Example

None.

