NAG Library Routine Document
 F08QHF (DTRSYL)

Abstract

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms and other implementation-dependent details.

1 Purpose

F08QHF (DTRSYL) solves the real quasi-triangular Sylvester matrix equation.

2 Specification

```
SUBROUTINE FO8QHF (TRANA, TRANB, ISGN, M, N, A, LDA, B, LDB, C, LDC,
    SCALE, INFO)
INTEGER ISGN, M, N, LDA, LDB, LDC, INFO
REAL (KIND=nag_wp) A(LDA,*), B (LDB,*), C (LDC,*), SCALE
CHARACTER(1) TRANA, TRANB
```

The routine may be called by its LAPACK name dtrsyl.

3 Description

F08QHF (DTRSYL) solves the real Sylvester matrix equation

$$
\operatorname{op}(A) X \pm X \operatorname{op}(B)=\alpha C
$$

where $\operatorname{op}(A)=A$ or A^{T}, and the matrices A and B are upper quasi-triangular matrices in canonical Schur form (as returned by F08PEF (DHSEQR)); α is a scale factor (≤ 1) determined by the routine to avoid overflow in $X ; A$ is m by m and B is n by n while the right-hand side matrix C and the solution matrix X are both m by n. The matrix X is obtained by a straightforward process of back-substitution (see Golub and Van Loan (1996)).

Note that the equation has a unique solution if and only if $\alpha_{i} \pm \beta_{j} \neq 0$, where $\left\{\alpha_{i}\right\}$ and $\left\{\beta_{j}\right\}$ are the eigenvalues of A and B respectively and the sign (+ or -) is the same as that used in the equation to be solved.

4 References

Golub G H and Van Loan C F (1996) Matrix Computations (3rd Edition) Johns Hopkins University Press, Baltimore

Higham N J (1992) Perturbation theory and backward error for $A X-X B=C$ Numerical Analysis Report University of Manchester

5 Arguments

1: TRANA - CHARACTER(1)
Input
On entry: specifies the option $\mathrm{op}(A)$.
TRANA $=$ ' N ' $\mathrm{op}(A)=A$.
TRANA $=$ ' T ' or ' C^{\prime}
$\operatorname{op}(A)=A^{\mathrm{T}}$.
Constraint: TRANA $={ }^{\prime} \mathrm{N}^{\prime}$, ' T ' or ' C '.

2: TRANB - CHARACTER(1)
On entry: specifies the option $\operatorname{op}(B)$.
TRANB $=$ ' ${ }^{\prime}$ '
$\operatorname{op}(B)=B$.
TRANB $=$ ' T ' or ' C '
$\mathrm{op}(B)=B^{\mathrm{T}}$.
Constraint: TRANB $=$ ' N ', ' T ' or ' C '.
3: ISGN - INTEGER
On entry: indicates the form of the Sylvester equation.
ISGN $=+1$
The equation is of the form $\operatorname{op}(A) X+X \operatorname{op}(B)=\alpha C$.
ISGN $=-1$
The equation is of the form $\operatorname{op}(A) X-X \operatorname{op}(B)=\alpha C$.
Constraint: $\operatorname{ISGN}=+1$ or -1 .
4: M - INTEGER
Input
On entry: m, the order of the matrix A, and the number of rows in the matrices X and C.
Constraint: $\mathrm{M} \geq 0$.
5: $\quad \mathrm{N}$ - INTEGER
Input
On entry: n, the order of the matrix B, and the number of columns in the matrices X and C.
Constraint: $\mathrm{N} \geq 0$.
6: $\quad \mathrm{A}(\mathrm{LDA}, *)-$ REAL (KIND=$=$ nag_wp) array
Input
Note: the second dimension of the array A must be at least $\max (1, \mathrm{M})$.
On entry: the m by m upper quasi-triangular matrix A in canonical Schur form, as returned by F08PEF (DHSEQR).

7: LDA - INTEGER
Input
On entry: the first dimension of the array A as declared in the (sub)program from which F08QHF (DTRSYL) is called.

Constraint: $\mathrm{LDA} \geq \max (1, \mathrm{M})$.
8: $\quad \mathrm{B}(\mathrm{LDB}, *)-$ REAL (KIND=nag_wp) array
Input
Note: the second dimension of the array B must be at least $\max (1, N)$.
On entry: the n by n upper quasi-triangular matrix B in canonical Schur form, as returned by F08PEF (DHSEQR).

9: LDB - INTEGER
Input
On entry: the first dimension of the array B as declared in the (sub)program from which F08QHF (DTRSYL) is called.

Constraint: $\mathrm{LDB} \geq \max (1, \mathrm{~N})$.
10: $\quad \mathrm{C}(\mathrm{LDC}, *)-$ REAL (KIND=nag_wp) array
Input/Output
Note: the second dimension of the array C must be at least $\max (1, \mathrm{~N})$.
On entry: the m by n right-hand side matrix C.

On exit: C is overwritten by the solution matrix X.
11: LDC - INTEGER
Input
On entry: the first dimension of the array C as declared in the (sub)program from which F08QHF
(DTRSYL) is called.
Constraint: $\operatorname{LDC} \geq \max (1, \mathrm{M})$.
12: $\operatorname{SCALE}-\operatorname{REAL}(\mathrm{KIND}=$ nag_wp $)$
Output
On exit: the value of the scale factor α.
13: INFO - INTEGER
Output
On exit: INFO $=0$ unless the routine detects an error (see Section 6).

6 Error Indicators and Warnings

$\mathrm{INFO}<0$
If $\operatorname{INFO}=-i$, argument i had an illegal value. An explanatory message is output, and execution of the program is terminated.
$\mathrm{INFO}=1$
A and B have common or close eigenvalues, perturbed values of which were used to solve the equation.

7 Accuracy

Consider the equation $A X-X B=C$. (To apply the remarks to the equation $A X+X B=C$, simply replace B by $-B$.)

Let \tilde{X} be the computed solution and R the residual matrix:

$$
R=C-(A \tilde{X}-\tilde{X} B)
$$

Then the residual is always small:

$$
\|R\|_{F}=O(\epsilon)\left(\|A\|_{F}+\|B\|_{F}\right)\|\tilde{X}\|_{F}
$$

However, \tilde{X} is not necessarily the exact solution of a slightly perturbed equation; in other words, the solution is not backwards stable.

For the forward error, the following bound holds:

$$
\|\tilde{X}-X\|_{F} \leq \frac{\|R\|_{F}}{\operatorname{sep}(A, B)}
$$

but this may be a considerable over estimate. See Golub and Van Loan (1996) for a definition of $\operatorname{sep}(A, B)$, and Higham (1992) for further details.

These remarks also apply to the solution of a general Sylvester equation, as described in Section 9.

8 Parallelism and Performance

F08QHF (DTRSYL) makes calls to BLAS and/or LAPACK routines, which may be threaded within the vendor library used by this implementation. Consult the documentation for the vendor library for further information.

Please consult the X06 Chapter Introduction for information on how to control and interrogate the OpenMP environment used within this routine. Please also consult the Users' Note for your implementation for any additional implementation-specific information.

9 Further Comments

The total number of floating-point operations is approximately $m n(m+n)$.
To solve the general real Sylvester equation

$$
A X \pm X B=C
$$

where A and B are general nonsymmetric matrices, A and B must first be reduced to Schur form (by calling F08PAF (DGEES), for example):

$$
A=Q_{1} \tilde{A} Q_{1}^{\mathrm{T}} \quad \text { and } \quad B=Q_{2} \tilde{B} Q_{2}^{\mathrm{T}}
$$

where \tilde{A} and \tilde{B} are upper quasi-triangular and Q_{1} and Q_{2} are orthogonal. The original equation may then be transformed to:

$$
\tilde{A} \tilde{X} \pm \tilde{X} \tilde{B}=\tilde{C}
$$

where $\tilde{X}=Q_{1}^{\mathrm{T}} X Q_{2}$ and $\tilde{C}=Q_{1}^{\mathrm{T}} C Q_{2}$. \tilde{C} may be computed by matrix multiplication; F08QHF (DTRSYL) may be used to solve the transformed equation; and the solution to the original equation can be obtained as $X=Q_{1} \tilde{X} Q_{2}^{\mathrm{T}}$.

The complex analogue of this routine is F08QVF (ZTRSYL).

10 Example

This example solves the Sylvester equation $A X+X B=C$, where

$$
\begin{aligned}
& A=\left(\begin{array}{rrrr}
0.10 & 0.50 & 0.68 & -0.21 \\
-0.50 & 0.10 & -0.24 & 0.67 \\
0.00 & 0.00 & 0.19 & -0.35 \\
0.00 & 0.00 & 0.00 & -0.72
\end{array}\right), \\
& B=\left(\begin{array}{rrrr}
-0.99 & -0.17 & 0.39 & 0.58 \\
0.00 & 0.48 & -0.84 & -0.15 \\
0.00 & 0.00 & 0.75 & 0.25 \\
0.00 & 0.00 & -0.25 & 0.75
\end{array}\right)
\end{aligned}
$$

and

$$
C=\left(\begin{array}{rrrr}
0.63 & -0.56 & 0.08 & -0.23 \\
-0.45 & -0.31 & 0.27 & 1.21 \\
0.20 & -0.35 & 0.41 & 0.84 \\
0.49 & -0.05 & -0.52 & -0.08
\end{array}\right) .
$$

10.1 Program Text

```
Program f08qhfe
    FO8QHF Example Program Text
    Mark 26 Release. NAG Copyright 2016.
    .. Use Statements ..
    Use nag_library, Only: dtrsyl, nag_wp, x04caf
    .. Implicit None Statement ..
    Implicit None
! .. Parameters ..
    Integer, Parameter :: nin = 5, nout = 6
! .. Local Scalars ..
    Real (Kind=nag_wp) :: scale
    Integer :: i, ifail, info, lda, ldb, ldc, m, n, &
    .. Local Arrays ..
    Real (Kind=nag_wp), Allocatable :: a(:,:), b(:,:), c(:,:)
    .. Executable Statements ..
```

```
    Write (nout,*) 'FO8QHF Example Program Results'
    Write (nout,*)
    Flush (nout)
! Skip heading in data file
    Read (nin,*)
    Read (nin,*) m, n
    lda = m
    ldb = n
    ldc = m
    sign = 1
    Allocate (a(lda,m),b(ldb,n),c(ldc,n))
! Read A, B and C from data file
    Read (nin,*)(a(i,1:m),i=1,m)
    Read (nin,*)(b(i,1:n),i=1,n)
    Read (nin,*)(c(i,1:n),i=1,m)
    Solve the Sylvester equation A*X + X*B = C for X
    The NAG name equivalent of dtrsyl is f08qhf
    Call dtrsyl('No transpose','No transpose',sign,m,n,a,lda,b,ldb,c,ldc, &
    scale,info)
    If (info==1) Then
        Write (nout,99999)
        Write (nout,*)
    End If
    Flush (nout)
    Print X
    ifail: behaviour on error exit
        =0 for hard exit, =1 for quiet-soft, =-1 for noisy-soft
    ifail = 0
    Call x04caf('General',' ',m,n,c,ldc,'Solution Matrix',ifail)
99999 Format (/,' A and B have common or very close eigenvalues.',/,' Pe', &
    'rturbed values were used to solve the equations')
End Program f08qhfe
```


10.2 Program Data

F08QHF	Example Program Data		:Values of M and N	
4	4			
0.10	0.50	0.68	-0.21	
-0.50	0.10	-0.24	0.67	
0.00	0.00	0.19	-0.35	
0.00	0.00	0.00	-0.72	:End of matrix A
-0.99	-0.17	0.39	0.58	
0.00	0.48	-0.84	-0.15	
0.00	0.00	0.75	0.25	
0.00	0.00	-0.25	0.75	:End of matrix B
0.63	-0.56	0.08	-0.23	
-0.45	-0.31	0.27	1.21	
0.20	-0.35	0.41	0.84	
0.49	-0.05	-0.52	-0.08	:End of matrix C

10.3 Program Results

F08QHF Example Program Results				
Solution Matrix				
	1	2	3	4
1	-0.4209	0.1764	0.2438	-0.9577
2	0.5600	-0.8337	-0.7221	0.5386
3	-0.1246	-0.3392	0.6221	0.8691
4	-0.2865	0.4113	0.5535	0.3174

