NAG Library Routine Document
 F08ZAF (DGGLSE)

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms and other implementation-dependent details.

1 Purpose

F08ZAF (DGGLSE) solves a real linear equality-constrained least squares problem.

2 Specification

```
SUBROUTINE FO8ZAF (M, N, P, A, LDA, B, LDB, C, D, X, WORK, LWORK, INFO)
INTEGER M, N, P, LDA, LDB, LWORK, INFO
REAL (KIND=nag_wp) A(LDA,*), B(LDB,*), C(M), D(P), X(N),
    WORK (max (1,LWORK))
```

The routine may be called by its LAPACK name dgglse.

3 Description

F08ZAF (DGGLSE) solves the real linear equality-constrained least squares (LSE) problem

$$
\underset{x}{\operatorname{minimize}}\|c-A x\|_{2} \quad \text { subject to } \quad B x=d
$$

where A is an m by n matrix, B is a p by n matrix, c is an m element vector and d is a p element vector. It is assumed that $p \leq n \leq m+p, \operatorname{rank}(B)=p$ and $\operatorname{rank}(E)=n$, where $E=\binom{A}{B}$. These conditions ensure that the LSE problem has a unique solution, which is obtained using a generalized $R Q$ factorization of the matrices B and A.

4 References

Anderson E, Bai Z, Bischof C, Blackford S, Demmel J, Dongarra J J, Du Croz J J, Greenbaum A, Hammarling S, McKenney A and Sorensen D (1999) LAPACK Users' Guide (3rd Edition) SIAM, Philadelphia

Anderson E, Bai Z and Dongarra J (1992) Generalized $Q R$ factorization and its applications Linear Algebra Appl. (Volume 162-164) 243-271
EldÉn L (1980) Perturbation theory for the least squares problem with linear equality constraints SIAM J. Numer. Anal. 17 338-350

5 Arguments

1: M - INTEGER
Input
On entry: m, the number of rows of the matrix A.
Constraint: $\mathrm{M} \geq 0$.
2: N - INTEGER Input
On entry: n, the number of columns of the matrices A and B.
Constraint: $\mathrm{N} \geq 0$.

3: $\quad \mathrm{P}$ - INTEGER
On entry: p, the number of rows of the matrix B.
Constraint: $0 \leq \mathrm{P} \leq \mathrm{N} \leq \mathrm{M}+\mathrm{P}$.
4: $\mathrm{A}(\mathrm{LDA}, *)-$ REAL (KIND=$=$ nag_wp) array
Input/Output
Note: the second dimension of the array A must be at least $\max (1, \mathrm{~N})$.
On entry: the m by n matrix A.
On exit: A is overwritten.
5: LDA - INTEGER
Input
On entry: the first dimension of the array A as declared in the (sub)program from which F08ZAF (DGGLSE) is called.

Constraint: $\mathrm{LDA} \geq \max (1, \mathrm{M})$.
6: $\quad \mathrm{B}(\mathrm{LDB}, *)-\mathrm{REAL}(\mathrm{KIND}=$ nag_wp) array
Input/Output
Note: the second dimension of the array B must be at least $\max (1, N)$.
On entry: the p by n matrix B.
On exit: B is overwritten.
7: LDB - INTEGER
Input
On entry: the first dimension of the array B as declared in the (sub)program from which F08ZAF (DGGLSE) is called.

Constraint: $\mathrm{LDB} \geq \max (1, \mathrm{P})$.
8: $\quad \mathrm{C}(\mathrm{M})-\mathrm{REAL}(\mathrm{KIND}=$ nag_wp $)$ array
Input/Output
On entry: the right-hand side vector c for the least squares part of the LSE problem.
On exit: the residual sum of squares for the solution vector x is given by the sum of squares of elements $\mathrm{C}(\mathrm{N}-\mathrm{P}+1), \mathrm{C}(\mathrm{N}-\mathrm{P}+2), \ldots, \mathrm{C}(\mathrm{M})$; the remaining elements are overwritten.

9: $\quad \mathrm{D}(\mathrm{P})$ - REAL (KIND=nag_wp) array
Input/Output
On entry: the right-hand side vector d for the equality constraints.
On exit: D is overwritten.
10: $\quad \mathrm{X}(\mathrm{N})$ - REAL (KIND=nag_wp) array
Output
On exit: the solution vector x of the LSE problem.
11: $\operatorname{WORK}(\max (1, \operatorname{LWORK}))-\mathrm{REAL}(\mathrm{KIND}=$ nag_wp $)$ array
Workspace
On exit: if $\operatorname{INFO}=0, \operatorname{WORK}(1)$ contains the minimum value of LWORK required for optimal performance.

12: LWORK - INTEGER
On entry: the dimension of the array WORK as declared in the (sub)program from which F08ZAF (DGGLSE) is called.

If LWORK $=-1$, a workspace query is assumed; the routine only calculates the optimal size of the WORK array, returns this value as the first entry of the WORK array, and no error message related to LWORK is issued.

Suggested value: for optimal performance, $\operatorname{LWORK} \geq \mathrm{P}+\min (\mathrm{M}, \mathrm{N})+\max (\mathrm{M}, \mathrm{N}) \times n b$, where $n b$ is the optimal block size.

Constraint: LWORK $\geq \max (1, \mathrm{M}+\mathrm{N}+\mathrm{P})$ or $\operatorname{LWORK}=-1$.
13: INFO - INTEGER
Output
On exit: INFO $=0$ unless the routine detects an error (see Section 6).

6 Error Indicators and Warnings

$\mathrm{INFO}<0$
If INFO $=-i$, argument i had an illegal value. An explanatory message is output, and execution of the program is terminated.

$\mathrm{INFO}=1$

The upper triangular factor R associated with B in the generalized $R Q$ factorization of the pair (B, A) is singular, so that $\operatorname{rank}(B)<p$; the least squares solution could not be computed.

$\mathrm{INFO}=2$

The $(N-P)$ by $(N-P)$ part of the upper trapezoidal factor T associated with A in the generalized $R Q$ factorization of the pair (B, A) is singular, so that the rank of the matrix (E) comprising the rows of A and B is less than n; the least squares solutions could not be computed.

7 Accuracy

For an error analysis, see Anderson et al. (1992) and EldÉn (1980). See also Section 4.6 of Anderson et al. (1999).

8 Parallelism and Performance

F08ZAF (DGGLSE) is threaded by NAG for parallel execution in multithreaded implementations of the NAG Library.

F08ZAF (DGGLSE) makes calls to BLAS and/or LAPACK routines, which may be threaded within the vendor library used by this implementation. Consult the documentation for the vendor library for further information.
Please consult the X06 Chapter Introduction for information on how to control and interrogate the OpenMP environment used within this routine. Please also consult the Users' Note for your implementation for any additional implementation-specific information.

9 Further Comments

When $m \geq n=p$, the total number of floating-point operations is approximately $\frac{2}{3} n^{2}(6 m+n)$; if $p \ll n$, the number reduces to approximately $\frac{2}{3} n^{2}(3 m-n)$.

E04NCF/E04NCA may also be used to solve LSE problems. It differs from F08ZAF (DGGLSE) in that it uses an iterative (rather than direct) method, and that it allows general upper and lower bounds to be specified for the variables x and the linear constraints $B x$.

10 Example

This example solves the least squares problem

$$
\underset{x}{\operatorname{minimize}}\|c-A x\|_{2} \quad \text { subject to } \quad B x=d
$$

where

$$
\begin{gathered}
c=\left(\begin{array}{r}
-1.50 \\
-2.14 \\
1.23 \\
-0.54 \\
-1.68 \\
0.82
\end{array}\right),\left(\begin{array}{rrrr}
-0.57 & -1.28 & -0.39 & 0.25 \\
-1.93 & 1.08 & -0.31 & -2.14 \\
2.30 & 0.24 & 0.40 & -0.35 \\
-1.93 & 0.64 & -0.66 & 0.08 \\
0.15 & 0.30 & 0.15 & -2.13 \\
-0.02 & 1.03 & -1.43 & 0.50
\end{array}\right) \\
B=\left(\begin{array}{cccc}
1.0 & 0 & -1.0 & 0 \\
0 & 1.0 & 0 & -1.0
\end{array}\right)
\end{gathered}
$$

and

$$
d=\binom{0}{0}
$$

The constraints $B x=d$ correspond to $x_{1}=x_{3}$ and $x_{2}=x_{4}$.

10.1 Program Text

```
    Program f08zafe
    F08ZAF Example Program Text
    Mark 26 Release. NAG Copyright 2016.
    .. Use Statements ..
    Use nag_library, Only: dgglse, dnrm2, nag_wp
    .. Implicit None Statement ..
    Implicit None
    .. Parameters ..
    Integer, Parameter : : nb = 64, nin = 5, nout = 6
    .. Local Scalars ..
    Real (Kind=nag_wp) :: rnorm
    Integer :: i, info, lda, ldb, lwork, m, n, p
    .. Local Arrays ..
    Real (Kind=nag_wp), Allocatable :: a(:,:), b(:,:), c(:), d(:), work(:), &
                        x(:)
    .. Executable Statements ..
    Write (nout,*) 'F08ZAF Example Program Results'
    Write (nout,*)
    Skip heading in data file
    Read (nin,*)
    Read (nin,*) m, n, p
    lda = m
    1db = p
    lwork = p + n + nb*(m+n)
    Allocate (a(lda,n),b(ldb,n),c(m),d(p),work(lwork),x(n))
! Read A, B, C and D from data file
    Read (nin,*)(a(i,1:n),i=1,m)
    Read (nin,*)(b(i,1:n),i=1,p)
    Read (nin,*) c(1:m)
```

```
    Read (nin,*) d(1:p)
    Solve the equality-constrained least squares problem
    minimize ||c - A*x|| (in the 2-norm) subject to B*x = D
    The NAG name equivalent of dgglse is f08zaf
    Call dgglse(m,n,p,a,lda,b,ldb,c,d,x,work,lwork,info)
    Print least squares solution
    Write (nout,*) 'Constrained least squares solution'
    Write (nout,99999) x(1:n)
    Compute the square root of the residual sum of squares
    The NAG name equivalent of dnrm2 is f06ejf
    rnorm = dnrm2(m-n+p,c(n-p+1),1)
    Write (nout,*)
    Write (nout,*) 'Square root of the residual sum of squares'
    Write (nout,99998) rnorm
99999 Format (1X,7F11.4)
99998 Format (3X,1P,E11.2)
    End Program f08zafe
```


10.2 Program Data

F08ZAF Example Program Data

6	4	2		:Values of M, N and P
-0.57	-1.28	-0.39	0.25	
-1.93	1.08	-0.31	-2.14	
2.30	0.24	0.40	-0.35	
-1.93	0.64	-0.66	0.08	
0.15	0.30	0.15	-2.13	
-0.02	1.03	-1.43	0.50	: End of matrix A
1.00	0.00	-1.00	0.00	
0.00	1.00	0.00	-1.00	: End of matrix B

-1.50
-2. 14
1.23
-0. 54
-1.68
0.82 :End of vector c
0.00
0.00 :End of vector d

10.3 Program Results

```
F08ZAF Example Program Results
Constrained least squares solution
    0.4890 0.9975 0.4890 0.9975
Square root of the residual sum of squares
    2.51E-02
```

