NAG Library Routine Document
 G02AEF

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms and other implementation-dependent details.

1 Purpose

G02AEF computes the factor loading matrix associated with the nearest correlation matrix with k-factor structure, in the Frobenius norm, to a given square, input matrix.

2 Specification

```
SUBROUTINE GO2AEF (G, LDG, N, K, ERRTOL, MAXIT, X, LDX, ITER, FEVAL,
                NRMPGD, IFAIL)
INTEGER LDG, N, K, MAXIT, LDX, ITER, FEVAL, IFAIL
REAL (KIND=nag_wp) G(LDG,N), ERRTOL, X(LDX,K), NRMPGD
```


3 Description

A correlation matrix C with k-factor structure may be characterised as a real square matrix that is symmetric, has a unit diagonal, is positive semidefinite and can be written as $C=X X^{\mathrm{T}}+\operatorname{diag}\left(I-X X^{\mathrm{T}}\right)$, where I is the identity matrix and X has n rows and k columns. X is often referred to as the factor loading matrix.

G02AEF applies a spectral projected gradient method to the modified problem $\min \left\|G-X X^{\mathrm{T}}+\operatorname{diag}\left(X X^{\mathrm{T}}-I\right)\right\|_{F}$ such that $\left\|x_{i}^{\mathrm{T}}\right\|_{2} \leq 1$, for $i=1,2, \ldots, n$, where x_{i} is the i th row of the factor loading matrix, X, which gives us the solution.

4 References

Birgin E G, MartÕnez J M and Raydan M (2001) Algorithm 813: SPG-software for convexconstrained optimization ACM Trans. Math. Software 27 340-349

Borsdorf R, Higham N J and Raydan M (2010) Computing a nearest correlation matrix with factor structure. SIAM J. Matrix Anal. Appl. 31(5) 2603-2622

5 Arguments

1: $\quad \mathrm{G}(\mathrm{LDG}, \mathrm{N})-$ REAL (KIND=$=$ nag_wp) array
Input/Output
On entry: G, the initial matrix.
On exit: a symmetric matrix $\frac{1}{2}\left(G+G^{\mathrm{T}}\right)$ with the diagonal elements set to unity.

2: LDG - INTEGER
 Input

On entry: the first dimension of the array G as declared in the (sub)program from which G02AEF is called.

Constraint: $\mathrm{LDG} \geq \mathrm{N}$.
3: N - INTEGER Input
On entry: n, the order of the matrix G.
Constraint: $\mathrm{N}>0$.

4: $\quad \mathrm{K}$ - INTEGER
On entry: k, the number of factors and columns of X.
Constraint: $0<\mathrm{K} \leq \mathrm{N}$.
5: \quad ERRTOL - REAL (KIND=nag_wp)
Input
On entry: the termination tolerance for the projected gradient norm. See references for further details. If ERRTOL ≤ 0.0 then 0.01 is used. This is often a suitable default value.

6: MAXIT - INTEGER
Input
On entry: specifies the maximum number of iterations in the spectral projected gradient method. If MAXIT $\leq 0,40000$ is used.

7: $\quad \mathrm{X}(\mathrm{LDX}, \mathrm{K})$ - REAL (KIND=nag_wp) array
Output
On exit: contains the matrix X.

8: LDX - INTEGER
Input
On entry: the first dimension of the array X as declared in the (sub)program from which G02AEF is called.

Constraint: $\mathrm{LDX} \geq \mathrm{N}$.
9: ITER - INTEGER
Output
On exit: the number of steps taken in the spectral projected gradient method.
10: FEVAL - INTEGER
Output
On exit: the number of evaluations of $\left\|G-X X^{\mathrm{T}}+\operatorname{diag}\left(X X^{\mathrm{T}}-I\right)\right\|_{F}$.
11: \quad NRMPGD - REAL (KIND=nag_wp)
Output
On exit: the norm of the projected gradient at the final iteration.
12: IFAIL - INTEGER
Input/Output
On entry: IFAIL must be set to $0,-1$ or 1 . If you are unfamiliar with this argument you should refer to Section 3.4 in How to Use the NAG Library and its Documentation for details.

For environments where it might be inappropriate to halt program execution when an error is detected, the value -1 or 1 is recommended. If the output of error messages is undesirable, then the value 1 is recommended. Otherwise, if you are not familiar with this argument, the recommended value is 0 . When the value -1 or 1 is used it is essential to test the value of IFAIL on exit.

On exit: IFAIL $=0$ unless the routine detects an error or a warning has been flagged (see Section 6).

6 Error Indicators and Warnings

If on entry IFAIL $=0$ or -1 , explanatory error messages are output on the current error message unit (as defined by X04AAF).
Errors or warnings detected by the routine:
IFAIL $=1$
On entry, $\mathrm{K}=\langle$ value \rangle and $\mathrm{N}=\langle$ value \rangle.
Constraint: $0<\mathrm{K} \leq \mathrm{N}$.

On entry, $\mathrm{LDG}=\langle$ value \rangle and $\mathrm{N}=\langle$ value \rangle.
Constraint: LDG $\geq \mathrm{N}$.
On entry, LDX $=\langle$ value \rangle and $\mathrm{N}=\langle$ value \rangle.
Constraint: LDX $\geq \mathrm{N}$.
On entry, $\mathrm{N}=\langle$ value \rangle.
Constraint: $\mathrm{N}>0$.

IFAIL $=2$

Spectral gradient method fails to converge in $\langle v a l u e\rangle$ iterations.
IFAIL $=-99$
An unexpected error has been triggered by this routine. Please contact NAG.
See Section 3.9 in How to Use the NAG Library and its Documentation for further information.
IFAIL $=-399$
Your licence key may have expired or may not have been installed correctly.
See Section 3.8 in How to Use the NAG Library and its Documentation for further information.
IFAIL $=-999$
Dynamic memory allocation failed.
See Section 3.7 in How to Use the NAG Library and its Documentation for further information.

7 Accuracy

The returned accuracy is controlled by ERRTOL and limited by machine precision.

8 Parallelism and Performance

G02AEF is threaded by NAG for parallel execution in multithreaded implementations of the NAG Library.

G02AEF makes calls to BLAS and/or LAPACK routines, which may be threaded within the vendor library used by this implementation. Consult the documentation for the vendor library for further information.

Please consult the X06 Chapter Introduction for information on how to control and interrogate the OpenMP environment used within this routine. Please also consult the Users' Note for your implementation for any additional implementation-specific information.

9 Further Comments

Arrays are internally allocated by G02AEF. The total size of these arrays is $\mathrm{N} \times \mathrm{N}+4 \times \mathrm{N} \times \mathrm{K}+(n b+3) \times \mathrm{N}+\mathrm{N}+50$ real elements and $6 \times \mathrm{N}$ integer elements. Here $n b$ is the block size required for optimal performance by F08FEF (DSYTRD) and F08FGF (DORMTR) which are called internally. All allocated memory is freed before return of G02AEF.

See G03CAF for constructing the factor loading matrix from a known correlation matrix.

10 Example

This example finds the nearest correlation matrix with $k=2$ factor structure to:

$$
G=\left(\begin{array}{rrrr}
2 & -1 & 0 & 0 \\
-1 & 2 & -1 & 0 \\
0 & -1 & 2 & -1 \\
0 & 0 & -1 & 2
\end{array}\right)
$$

10.1 Program Text

Program g02aefe
! GO2AEF Example Program Text
! Mark 26 Release. NAG Copyright 2016.
! .. Use Statements ..
Use nag_library, Only: dgemm, g02aef, nag_wp, x04caf
! . . Implicit None Statement ..
Implicit None
! .. Parameters ..
Real (Kind=nag_wp), Parameter : : one = 1.0_nag_wp Real (Kind=nag_wp), Parameter : zero = O.O_nag_wp Integer, Parameter : : nin $=5$, nout $=6$.. Local Scalars .. Real (Kind=nag_wp) : : errtol, nrmpgd Integer : : feval, i, ifail, iter, k, lda, ldg, \& ldx, maxit, n
! .. Local Arrays .. Real (Kind=nag_wp), Allocatable : : $a(:,:), g(:,:), x(:,:)$
! .. Executable Statements ..
Write (nout,*) 'GO2AEF Example Program Results' Write (nout,*) Flush (nout)
! Skip heading in data file Read (nin,*)
! Read in the problem size Read (nin,*) n
lda $=\mathrm{n}$
$\operatorname{ldg}=\mathrm{n}$
ldx $=\mathrm{n}$
Allocate (a(lda,n),g(ldg,n),x(ldx,n))
! Read in the matrix G
Read (nin,*) ($g(i, 1: n), i=1, n)$
! Use the defaults for ERRTOL and MAXIT
errtol = zero
maxit $=0$
! Set k value
$\mathrm{k}=2$
! Calculate the nearest factor loading matrix ifail = 0

Call g02aef(g,ldg,n,k,errtol,maxit,x,ldx,iter,feval,nrmpgd,ifail)
! Display results
ifail = 0

Write (nout,*)
Write (nout, 99999) 'Number of steps taken:', iter
Write (nout,99998) 'Number of function evaluations:', feval

```
! Generate Nearest k factor correlation matrix
! The NAG name equivalent of dgemm is f06yaf
    Call dgemm('N','T',n,n,k,one,x,n,x,n,zero,a,n)
    Do i = 1, n
        a(i,i) = one
    End Do
    Write (nout,*)
    Flush (nout)
    ifail = 0
    Call x04caf('General',' ',n,n,a,lda,'Nearest Correlation Matrix',ifail)
99999 Format (1X,A,I11)
99998 Format (1X,A,I9)
```

End Program g02aefe

10.2 Program Data

GO2AEF	Example Program Data			
4				
2.0	-1.0	0.0	0.0	
-1.0	2.0	-1.0	0.0	
0.0	-1.0	2.0	-1.0	
0.0	0.0	-1.0	2.0	$:$: End of G

10.3 Program Results

G02AEF Example Program Results
Factor Loading Matrix X

	1	2
2.7665	-0.6271	
2	-0.4250	0.9052
-0.4250	-0.9052	
4	0.7665	0.6271

Number of steps taken: 5
Number of function evaluations: 6
Nearest Correlation Matrix

1	2	3	4
1.0000	-0.8935	0.2419	0.1943
-0.8935	1.0000	-0.6388	0.2419
0.2419	-0.6388	1.0000	-0.8935
0.1943	0.2419	-0.8935	1.0000

