NAG Library Routine Document
 G04DAF

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms and other implementation-dependent details.

1 Purpose

G04DAF computes sum of squares for a user-defined contrast between means.

2 Specification

```
SUBROUTINE GO4DAF (NT, TMEAN, IREP, RMS, RDF, NC, CT, LDCT, EST, TABL, &
    LDTABL, TOL, USETX, TX, IFAIL)
INTEGER NT, IREP(NT), NC, LDCT, LDTABL, IFAIL
REAL (KIND=nag_wp) TMEAN(NT), RMS, RDF, CT(LDCT,NC), EST(NC), &
    TABL(LDTABL,*), TOL, TX(NT)
LOGICAL USETX
```


3 Description

In the analysis of designed experiments the first stage is to compute the basic analysis of variance table, the estimate of the error variance (the residual or error mean square), $\hat{\sigma}^{2}$, and the (variance ratio) F-statistic for the t treatments. If this F-test is significant then the second stage of the analysis is to explore which treatments are significantly different.

If there is a structure to the treatments then this may lead to hypotheses that can be defined before the analysis and tested using linear contrasts. For example, if the treatments were three different fixed temperatures, say 18,20 and 22 , and an uncontrolled temperature (denoted by N) then the following contrasts might be of interest.

	18	20	22	N
(a)	$\frac{1}{3}$	$\frac{1}{3}$	$\frac{1}{3}$	-1
(b)	-1	0	1	0

The first represents the average difference between the controlled temperatures and the uncontrolled temperature. The second represents the linear effect of an increasing fixed temperature.

For a randomized complete block design or a completely randomized design, let the treatment means be $\hat{\tau}_{i}, i=1,2, \ldots, t$, and let the j th contrast be defined by $\lambda_{i j}, i=1,2, \ldots, t$, then the estimate of the contrast is simply:

$$
\Lambda_{j}=\sum_{i=1}^{t} \hat{\tau}_{i} \lambda_{i j}
$$

and the sum of squares for the contrast is:

$$
\begin{equation*}
\mathrm{SS}_{j}=\frac{\Lambda_{j}^{2}}{\sum_{i=1}^{t} \lambda_{i j}^{2} / n_{i}} \tag{1}
\end{equation*}
$$

where n_{i} is the number of observations for the i th treatment. Such a contrast has one degree of freedom so that the appropriate F-statistic is $\mathrm{SS}_{j} / \hat{\sigma}^{2}$.

The two contrasts $\lambda_{i j}$ and $\lambda_{i j^{\prime}}$ are orthogonal if $\sum_{i=1}^{t} \lambda_{i j} \lambda_{i j^{\prime}}=0$ and the contrast $\lambda_{i j}$ is orthogonal to the overall mean if $\sum_{i=1}^{t} \lambda_{i j}=0$. In practice these sums will be tested against a small quantity, ϵ. If each of a set of contrasts is orthogonal to the mean and they are all mutually orthogonal then the contrasts provide a partition of the treatment sum of squares into independent components. Hence the resulting F-tests are independent.

If the treatments come from a design in which treatments are not orthogonal to blocks then the sum of squares for a contrast is given by:

$$
\begin{equation*}
\mathrm{SS}_{j}=\frac{\Lambda_{j} \Lambda_{j}^{*}}{\sum_{i=1}^{t} \lambda_{i j}^{2} / n_{i}} \tag{2}
\end{equation*}
$$

where

$$
\Lambda_{j}^{*}=\sum_{i=1}^{t} \tau_{i}^{*} \lambda_{i j}
$$

with τ_{i}^{*}, for $i=1,2, \ldots, t$, being adjusted treatment means computed by first eliminating blocks then computing the treatment means from the block adjusted observations without taking into account the non-orthogonality between treatments and blocks. For further details see John (1987).

4 References

Cochran W G and Cox G M (1957) Experimental Designs Wiley
John J A (1987) Cyclic Designs Chapman and Hall
Winer B J (1970) Statistical Principles in Experimental Design McGraw-Hill

5 Arguments

1: NT - INTEGER Input
On entry: t, the number of treatment means.
Constraint: NT ≥ 2.
2: TMEAN(NT) - REAL (KIND=nag_wp) array Input
On entry: the treatment means, $\hat{\tau}_{i}$, for $i=1,2, \ldots, t$.
3: $\operatorname{IREP}(\mathrm{NT})$ - INTEGER array
Input
On entry: the replication for each treatment mean, n_{i}, for $i=1,2, \ldots, t$.
4: \quad RMS - REAL (KIND=nag_wp)
Input
On entry: the residual mean square, $\hat{\sigma}^{2}$.
Constraint: RMS >0.0.
5: \quad RDF $-\operatorname{REAL}(\mathrm{KIND}=$ nag_wp $)$
Input
On entry: the residual degrees of freedom.
Constraint: RDF ≥ 1.0.

6: NC - INTEGER
Input
On entry: the number of contrasts.
Constraint: $\mathrm{NC} \geq 1$.
7: $\quad \mathrm{CT}(\mathrm{LDCT}, \mathrm{NC})$ - REAL (KIND=nag_wp) array
Input
On entry: the columns of CT must contain the NC contrasts, that is $\mathrm{CT}(i, j)$ must contain $\lambda_{i j}$, for $i=1,2, \ldots, t$ and $j=1,2, \ldots, \mathrm{NC}$.

8: LDCT - INTEGER
Input
On entry: the first dimension of the array CT as declared in the (sub)program from which G04DAF is called.

Constraint: $\mathrm{LDCT} \geq \mathrm{NT}$.
9: $\quad \mathrm{EST}(\mathrm{NC})-\mathrm{REAL}(\mathrm{KIND}=$ nag_wp) array
Output
On exit: the estimates of the contrast, Λ_{j}, for $j=1,2, \ldots, \mathrm{NC}$.
10: \quad TABL(LDTABL,$*)$ - REAL (KIND=nag_wp) array
Input/Output
Note: the second dimension of the array TABL must be at least 5 .
On entry: the elements of TABL that are not referenced as described below remain unchanged.
On exit: the rows of the analysis of variance table for the contrasts. For each row column 1 contains the degrees of freedom, column 2 contains the sum of squares, column 3 contains the mean square, column 4 the F-statistic and column 5 the significance level for the contrast. Note that the degrees of freedom are always one and so the mean square equals the sum of squares.

11: LDTABL - INTEGER
Input
On entry: the first dimension of the array TABL as declared in the (sub)program from which G04DAF is called.

Constraint: LDTABL \geq NC.
12: \quad TOL - REAL (KIND=nag_wp)
Input
On entry: the tolerance, ϵ used to check if the contrasts are orthogonal and if they are orthogonal to the mean. If TOL ≤ 0.0 the value machine precision is used.

13: USETX - LOGICAL
Input
On entry: if USETX $=$.TRUE. the means τ_{i}^{*} are provided in TX and the formula (2) is used instead of formula (1).
If USETX $=$. FALSE. formula (1) is used and TX is not referenced.
14: $\mathrm{TX}(\mathrm{NT})$ - REAL (KIND=nag_wp) array
Input
On entry: if USETX $=$. TRUE. TX must contain the means τ_{i}^{*}, for $i=1,2, \ldots, t$.
15: IFAIL - INTEGER
Input/Output
On entry: IFAIL must be set to $0,-1$ or 1 . If you are unfamiliar with this argument you should refer to Section 3.4 in How to Use the NAG Library and its Documentation for details.
For environments where it might be inappropriate to halt program execution when an error is detected, the value -1 or 1 is recommended. If the output of error messages is undesirable, then the value 1 is recommended. Otherwise, because for this routine the values of the output arguments may be useful even if IFAIL $\neq 0$ on exit, the recommended value is -1 . When the value -1 or 1 is used it is essential to test the value of IFAIL on exit.

On exit: IFAIL $=0$ unless the routine detects an error or a warning has been flagged (see Section 6).

6 Error Indicators and Warnings

If on entry IFAIL $=0$ or -1 , explanatory error messages are output on the current error message unit (as defined by X04AAF).
Note: G04DAF may return useful information for one or more of the following detected errors or warnings.

Errors or warnings detected by the routine:
IFAIL $=1$
On entry, $\mathrm{NC}<1$,
or $\quad \mathrm{NT}<2$,
or $\quad \mathrm{LDCT}<\mathrm{NT}$,
or LDTABL $<$ NC,
or \quad RMS ≤ 0.0,
or $\quad \operatorname{RDF}<1.0$.

IFAIL $=2$
On entry, a contrast is not orthogonal to the mean,
or at least two contrasts are not orthogonal.
If $\operatorname{IFAIL}=2$ full results are returned but they should be interpreted with care.
IFAIL $=-99$
An unexpected error has been triggered by this routine. Please contact NAG.
See Section 3.9 in How to Use the NAG Library and its Documentation for further information.
IFAIL $=-399$
Your licence key may have expired or may not have been installed correctly.
See Section 3.8 in How to Use the NAG Library and its Documentation for further information.
IFAIL $=-999$
Dynamic memory allocation failed.
See Section 3.7 in How to Use the NAG Library and its Documentation for further information.

7 Accuracy

The computations are stable.

8 Parallelism and Performance

G04DAF is not threaded in any implementation.

9 Further Comments

If the treatments have a factorial structure G04CAF should be used and if the treatments have no structure the means can be compared using G04DBF.

10 Example

The data is from a completely randomized experiment on potato scab with seven treatments representing amounts of sulphur applied, whether the application was in spring or autumn and a control treatment. The one-way anova is computed using G02BBF. Two contrasts are analysed, one comparing the control with use of sulphur, the other comparing spring with autumn application.

10.1 Program Text

Program g04dafe
! GO4DAF Example Program Text
! Mark 26 Release. NAG Copyright 2016.
! .. Use Statements ..
Use nag_library, Only: g04bbf, g04daf, nag_wp
! .. Implicit None Statement ..
Implicit None
! .. Parameters ..
Integer, Parameter $\quad:: \operatorname{nin}=5$, nout $=6$
! .. Local Scalars ..
Real (Kind=nag_wp) : : gmean, rdf, rms, tol
Integer : : i, iblock, ifail, irdf, ldc, ldct, \&
Logical
ldtabl, lit, n, nc, nt
.. Local Arrays ..
Real (Kind=nag_wp), Allocatable : : bmean(:), c(:,:), ct(:,:), ef(:), \&
est(:), r(:), tabl(:,:), tmean(:), \& tx(:), wk(:), y(:)
Integer, Allocatable : irep(:), it(:)
Character (11), Allocatable : names(:)
! .. Intrinsic Procedures ..
Intrinsic : : abs
! .. Executable Statements ..
Write (nout,*) 'G04DAF Example Program Results'
Write (nout,*)
! Skip heading in data file
Read (nin,*)
! Read in problem size for G04BBF
Read (nin,*) n, nt, iblock
ldc $=n t$
If ($n t>1$) Then
lit $=n$
Else
lit $=1$
End If

! Read in the data and plot information for GO4BBF
Read (nin,*) y(1:n)
If ($n t>1$) Then
Read (nin,*) it(1:n)
End If
! Don't use TX when calling GO4DAF
usetx = .False.
! Read in the number of contrasts
Read (nin,*) nc
! Using first 4 rows of TABL in GO4BBF next NC rows in GO4DAF
ldtabl $=\mathrm{nc}+4$
ldct $=n t$

```
    Allocate (ct(ldct,nc),est(nc),tabl(ldtabl,5),tx(nt),names(nc))
! Read in the contrasts and their names
    Do i = 1, nc
        Read (nin,*) ct(1:nt,i)
        Read (nin,99999) names(i)
    End Do
! Use default tolerance
    tol = O.OEO_nag_wp
    Use standard degrees of freedom
    irdf = 0
! Calculate the ANOVA table
    ifail = 0
    Call g04bbf(n,y,iblock,nt,it,gmean,bmean,tmean,tabl,ldtabl,c,ldc,irep,r, &
        ef,tol,irdf,wk,ifail)
    Display results from GO4BBF
    Write (nout,*) ' ANOVA table'
    Write (nout,*)
    Write (nout,*) , Source df SS MS F', &
    ' Prob'
    Write (nout,*)
    If (iblock>1) Then
        Write (nout,99998) ' Blocks ', tabl(1,1:5)
    End If
    Write (nout,99998) ' Treatments', tabl(2,1:5)
    Write (nout,99998) ' Residual ', tabl(3,1:3)
    Write (nout,99998) ' Total ', tabl(4,1:2)
    Write (nout,*)
    Extract the residual mean square and degrees of freedom from ANOVA
    table
    rms = tabl(3,3)
    rdf = tabl(3,1)
    Compute sums of squares for contrast
    ifail = -1
    Call g04daf(nt,tmean,irep,rms,rdf,nc,ct,ldct,est,tabl(5,1),ldtabl,tol, &
        usetx,tx,ifail)
    If (ifail/=0) Then
        If (ifail/=2) Then
            Go To 100
        End If
End If
! Display results from GO4DAF
Write (nout,*) ' Orthogonal Contrasts'
Write (nout,*)
Write (nout,99998)(names(i),tabl(i+4,1:5),i=1,nc)
100 Continue
99999 Format (A)
99998 Format (A,3X,F3.0,2X,F10.1,2X,F10.1,2X,F10.3,2X,F9.4)
    End Program g04dafe
```


10.2 Program Data

```
G04DAF Example Program Data
```

G04DAF Example Program Data
3 2 7 1 : : N , N T , ~ I B L O C K ~ (s e e ~ G O 4 B B F)
3 2 7 1 : : N , N T , ~ I B L O C K ~ (s e e ~ G O 4 B B F)
12 10 24 29 30 18 32 26

```
12 10 24 29 30 18 32 26
```



```
18}241219 10 4 4 5 17 7 16 17 :: End of Y (see GO4BBF
```

18}241219 10 4 4 5 17 7 16 17 :: End of Y (see GO4BBF
1
1
2
2
555 5 6 6 6 6 7 7 7 7 :: End of IT (see GO4BBF)

```
555 5 6 6 6 6 7 7 7 7 :: End of IT (see GO4BBF)
```

```
2
6 -1 -1 -1 -1 -1 -1
    Cntl v S
0 1 -1 1 -1 1 -1
Spring v A
```

 : : NC
 :: First contrast
 : : Name of first contrast
 : : Second contrast
: : Name of second contrast

10.3 Program Results

G04DAF Example Program Results					
ANOVA table					
Source	df	SS	MS	F	Prob
Treatments	6.	972.3	162.1	3.608	0.0103
Residual	25.	1122.9	44.9		
Total	31.	2095.2			
Orthogonal Contrasts					
Cntl v S	1.	518.0	518.0	11.533	0.0023
Spring v A	1.	228.2	228.2	5.080	0.0332

