NAG Library Routine Document

m01dcf (charvec_rank)

1
Purpose

m01dcf ranks a vector of character data in ASCII or reverse ASCII order of a specified substring.

2
Specification

Fortran Interface
Subroutine m01dcf ( ch, m1, m2, l1, l2, order, irank, ifail)
Integer, Intent (In):: m1, m2, l1, l2
Integer, Intent (Inout):: ifail
Integer, Intent (Out):: irank(m2)
Character (*), Intent (In):: ch(m2)
Character (1), Intent (In):: order
C Header Interface
#include <nagmk26.h>
void  m01dcf_ (const char ch[], const Integer *m1, const Integer *m2, const Integer *l1, const Integer *l2, const char *order, Integer irank[], Integer *ifail, const Charlen length_ch, const Charlen length_order)

3
Description

m01dcf uses a variant of list-merging, as described on pages 165–166 in Knuth (1973). The routine takes advantage of natural ordering in the data, and uses a simple list insertion in a preparatory pass to generate ordered lists of length at least 10. The ranking is stable: equal elements preserve their ordering in the input data.
Only the substring (l1:l2) of each element of the array ch is used to determine the rank order.

4
References

Knuth D E (1973) The Art of Computer Programming (Volume 3) (2nd Edition) Addison–Wesley

5
Arguments

1:     chm2 – Character(*) arrayInput
On entry: elements m1 to m2 of ch must contain character data to be ranked.
Constraint: the length of each element of ch must not exceed 255.
2:     m1 – IntegerInput
On entry: the index of the first element of ch to be ranked.
Constraint: m1>0.
3:     m2 – IntegerInput
On entry: the index of the last element of ch to be ranked.
Constraint: m2m1.
4:     l1 – IntegerInput
5:     l2 – IntegerInput
On entry: only the substring (l1:l2) of each element of ch is to be used in determining the rank order.
Constraint: 0<l1l2lench1.
6:     order – Character(1)Input
On entry: if order='A', the values will be ranked in ASCII order.
If order='R', in reverse ASCII order.
Constraint: order='A' or 'R'.
7:     irankm2 – Integer arrayOutput
On exit: elements m1 to m2 of irank contain the ranks of the corresponding elements of ch. Note that the ranks are in the range m1 to m2: thus, if chi is the first element in the rank order, iranki is set to m1.
8:     ifail – IntegerInput/Output
On entry: ifail must be set to 0, -1 or 1. If you are unfamiliar with this argument you should refer to Section 3.4 in How to Use the NAG Library and its Documentation for details.
For environments where it might be inappropriate to halt program execution when an error is detected, the value -1 or 1 is recommended. If the output of error messages is undesirable, then the value 1 is recommended. Otherwise, if you are not familiar with this argument, the recommended value is 0. When the value -1 or 1 is used it is essential to test the value of ifail on exit.
On exit: ifail=0 unless the routine detects an error or a warning has been flagged (see Section 6).

6
Error Indicators and Warnings

If on entry ifail=0 or -1, explanatory error messages are output on the current error message unit (as defined by x04aaf).
Errors or warnings detected by the routine:
ifail=1
On entry, l1=value.
Constraint: l11.
On entry, l1=value and l2=value.
Constraint: l1l2.
On entry, l2=value.
Constraint: l21.
On entry, l2=value and lench1=value.
Constraint: l2lench1.
On entry, m1=value.
Constraint: m11.
On entry, m1=value and m2=value.
Constraint: m1m2.
On entry, m2=value.
Constraint: m21.
ifail=2
On entry, order has an illegal value: order=value.
ifail=3
On entry, lench1=value.
Constraint: lench1255.
ifail=-99
An unexpected error has been triggered by this routine. Please contact NAG.
See Section 3.9 in How to Use the NAG Library and its Documentation for further information.
ifail=-399
Your licence key may have expired or may not have been installed correctly.
See Section 3.8 in How to Use the NAG Library and its Documentation for further information.
ifail=-999
Dynamic memory allocation failed.
See Section 3.7 in How to Use the NAG Library and its Documentation for further information.

7
Accuracy

Not applicable.

8
Parallelism and Performance

m01dcf is not threaded in any implementation.

9
Further Comments

The average time taken by the routine is approximately proportional to n×logn, where n=m2-m1+1.
The routine relies on the Fortran intrinsic functions LLT and LGT to order characters according to the ASCII collating sequence.

10
Example

This example reads a file of 12-character records, and ranks them in reverse ASCII order on characters 7 to 12.

10.1
Program Text

Program Text (m01dcfe.f90)

10.2
Program Data

Program Data (m01dcfe.d)

10.3
Program Results

Program Results (m01dcfe.r)