Module 3.1: nag_inv_hyp_fun
 Inverse Hyperbolic Functions

nag_inv_hyp_fun contains procedures for approximating the inverse hyperbolic functions arctanh, arcsinh and arccosh with real arguments.

Contents

Procedures
nag_arctanh 3.1.3Inverse hyperbolic tangent, $\operatorname{arctanh} x$
nag_arcsinh 3.1.5
Inverse hyperbolic sine, $\operatorname{arcsinh} x$
nag_arccosh 3.1.7Inverse hyperbolic cosine, $\operatorname{arccosh} x$Examples
Example 1: Evaluation of the Inverse Hyperbolic Functions 3.1.9
Additional Examples 3.1.11
References 3.1.12

Procedure: nag_arctanh

1 Description

nag_arctanh calculates an approximate value for the inverse hyperbolic tangent, arctanh x, where x is real (Abramowitz and Stegun [1], Chapter 4.6).

2 Usage

USE nag_inv_hyp_fun
[value =] nag_arctanh (x [, optional arguments])
The function result is a scalar, of type real $(\operatorname{kind}=w p)$, containing $\operatorname{arctanh} x$.

3 Arguments

3.1 Mandatory Argument

$\mathbf{x}-\operatorname{real}(\operatorname{kind}=w p), \operatorname{intent}(i n)$
Input: the argument x of the function.
Constraints: $|\mathrm{x}|<1.0$.

3.2 Optional Argument

error - type(nag_error), intent(inout), optional
The NAG fl90 error-handling argument. See the Essential Introduction, or the module document nag_error_handling (1.2). You are recommended to omit this argument if you are unsure how to use it. If this argument is supplied, it must be initialized by a call to nag_set_error before this procedure is called.

4 Error Codes

Fatal errors (error\%level = 3):
error\%code Description
301 An input argument has an invalid value.

5 Examples of Usage

A complete example of the use of this procedure appears in Example 1 of this module document.

6 Further Comments

6.1 Algorithmic Detail

- For $x^{2} \leq \frac{1}{2}$, the procedure uses a Chebyshev expansion of the form

$$
\operatorname{arctanh} x=x \times y(t)=x \sum_{r=0}^{\prime} a_{r} T_{r}(t)
$$

$$
\text { where }-\frac{1}{\sqrt{2}} \leq x \leq \frac{1}{\sqrt{2}}, \quad-1 \leq t \leq 1, \quad \text { and } \quad t=4 x^{2}-1
$$

- For $\frac{1}{2}<x^{2}<1$, it uses

$$
\operatorname{arctanh} x=\frac{1}{2} \ln \left(\frac{1+x}{1-x}\right) .
$$

- For $|x| \geq 1$, the procedure fails as $\operatorname{arctanh} x$ is undefined.

6.2 Accuracy

If δ and ε are the relative errors in the argument and result, respectively, then in principle

$$
|\varepsilon| \simeq|\theta \delta|, \quad \text { where } \theta=\frac{x}{\left(1-x^{2}\right) \operatorname{arctanh} x}
$$

That is, the relative error in the argument, x, is amplified by at least a factor θ in the result. The equality should hold if δ is greater than EPSILON (1.0_wp) (i.e., if δ is due to data errors etc.) but if δ is simply due to round-off in the machine representation then it is possible that an extra figure may be lost in internal calculation round-off.

The behaviour of the amplification factor is shown in Figure 1.

Figure 1: The error amplification factor θ.
The factor is not significantly greater than one except for arguments close to $|x|=1$. However, in the region where $|x|$ is close to one, $1-|x| \sim \delta$, the above analysis is inapplicable since x is bounded by definition, $|x|<1$. In this region where arctanh is tending to infinity we have $\varepsilon \sim 1 / \ln \delta$ which implies an obvious, unavoidable serious loss of accuracy near $|x| \sim 1$; e.g., if x and 1 agree to 6 significant figures, the result for $\operatorname{arctanh} x$ would be correct to at most about one figure.

Procedure: nag_arcsinh

1 Description

nag_arcsinh calculates an approximate value for the inverse hyperbolic sine, $\operatorname{arcsinh} x$, where x is real (Abramowitz and Stegun [1], Chapter 4.6).

2 Usage

```
USE nag_inv_hyp_fun
[value =] nag_arcsinh(x)
```

The function result is a scalar, of type real $(\operatorname{kind}=w p)$, containing $\operatorname{arcsinh} x$.

3 Arguments

3.1 Mandatory Argument

$\mathbf{x}-\operatorname{real}(\operatorname{kind}=w p)$, intent(in)
Input: the argument x of the function.

4 Error Codes

None.

5 Examples of Usage

A complete example of the use of this procedure appears in Example 1 of this module document.

6 Further Comments

6.1 Algorithmic Detail

- For $|x| \leq 1$ the procedure uses a Chebyshev expansion of the form

$$
\operatorname{arcsinh} x=x \times y(t)=x \sum_{r=0}^{\prime} c_{r} T_{r}(t), \quad \text { where } t=2 x^{2}-1 .
$$

- For $|x|>1$ it uses the fact that

$$
\operatorname{arcsinh} x=\operatorname{sign} x \times \ln \left(|x|+\sqrt{x^{2}+1}\right) .
$$

This form is used directly for $1<|x|<10^{k}$, where $k=n / 2+1$, and the machine uses approximately n decimal place arithmetic

- For $|x| \geq 10^{k}, \sqrt{x^{2}+1}$ is equal to $|x|$ to within the accuracy of the machine and hence we can guard against premature overflow and, without loss of accuracy, calculate

$$
\operatorname{arcsinh} x=\operatorname{sign} x \times(\ln 2+\ln |x|) .
$$

6.2 Accuracy

If δ and ε are the relative errors in the argument and the result, respectively, then in principle

$$
|\varepsilon| \simeq|\theta \delta|, \quad \text { where } \theta=\frac{x}{\sqrt{1+x^{2}} \operatorname{arcsinh} x}
$$

That is, the relative error in the argument, x, is amplified by a factor at least θ, in the result.
The equality should hold if δ is greater than EPSILON(1.0_wp) (i.e., if δ is due to data errors etc.) but if δ is simply due to round-off in the machine representation it is possible that an extra figure may be lost in internal calculation round-off.

The behaviour of the amplification factor is shown in Figure 2.

Figure 2: The error amplification factor θ.
It should be noted that this factor is always less than or equal to one. For large x we have the absolute error in the result, E, in principle, given by $E \sim \delta$. This means that eventually accuracy is limited by EPSILON(1.0_wp).

Procedure: nag_arccosh

1 Description

nag_arccosh calculates an approximate value for the inverse hyperbolic cosine, $\operatorname{arccosh} x$, where x is real (Abramowitz and Stegun [1], Chapter 4.6).

```
2 Usage
USE nag_inv_hyp_fun
[value =] nag_arccosh(x [, optional arguments])
```

The function result is a scalar, of type real (kind $=w p$), containing $\operatorname{arccosh} x$.

3 Arguments

3.1 Mandatory Argument

$\mathbf{x}-\operatorname{real}(\operatorname{kind}=w p)$, intent(in)
Input: the argument x of the function.
Constraints: $\mathrm{x} \geq 1.0$.

3.2 Optional Argument

error - type(nag_error), intent(inout), optional
The NAG fl90 error-handling argument. See the Essential Introduction, or the module document nag_error_handling (1.2). You are recommended to omit this argument if you are unsure how to use it. If this argument is supplied, it must be initialized by a call to nag_set_error before this procedure is called.

4 Error Codes

Fatal errors (error\%level = 3):
error\%code Description
301 An input argument has an invalid value.

5 Examples of Usage

A complete example of the use of this procedure appears in Example 1 of this module document.

6 Further Comments

6.1 Algorithmic Detail

The result is based on the relation

$$
\operatorname{arccosh} x=\ln \left(x+\sqrt{x^{2}-1}\right)
$$

where the square root is taken to be positive.
This form is used directly for $1<x<10^{k}$, where $k=n / 2+1$, and the machine uses approximately n decimal place arithmetic.

For $x \geq 10^{k}, \sqrt{x^{2}-1}$ is equal to \sqrt{x} to within the accuracy of the machine and hence we can guard against premature overflow and, without loss of accuracy, calculate

$$
\operatorname{arccosh} x=\ln 2+\ln x .
$$

6.2 Accuracy

If δ and ε are the relative errors in the argument and result respectively, then in principle

$$
|\varepsilon| \simeq|\theta \delta|, \quad \text { where } \theta=\frac{x}{\sqrt{x^{2}-1} \operatorname{arccosh} x}
$$

That is, the relative error in the argument is amplified by a factor at least θ in the result. The equality should apply if δ is greater than EPSILON (1.0_wp) (i.e., if δ is due to data errors etc.) but if δ is simply a result of round-off in the machine representation it is possible that an extra figure may be lost in internal calculation and round-off.

The behaviour of the amplification factor is shown Figure 3.

Figure 3: The error amplification factor θ.
It should be noted that for $x>2$ the factor is always less than 1.0. For large x we have the absolute error E in the result, in principle, given by $E \sim \delta$. This means that eventually accuracy is limited by EPSILON (1.0_wp). More significantly, for x close to $1, x-1 \sim \delta$, the above analysis becomes inapplicable due to the fact that both function and argument are bounded, $x \geq 1$, $\operatorname{arccosh} x \geq 0$. In this region we have $E \sim \sqrt{\delta}$. That is, there will be approximately half as many decimal places correct in the result as there were correct figures in the argument.

Example 1: Evaluation of the Inverse Hyperbolic Functions

This example program evaluates the functions nag_arctanh, nag_arcsinh, and nag_arccosh at a set of real values of the argument x .

1 Program Text

Note. The listing of the example program presented below is double precision. Single precision users are referred to Section 5.2 of the Essential Introduction for further information.

```
PROGRAM nag_inv_hyp_fun_ex01
! Example Program Text for nag_inv_hyp_fun
! NAG fl90, Release 3. NAG Copyright 1997.
! .. Use Statements ..
USE nag_examples_io, ONLY : nag_std_out
USE nag_inv_hyp_fun, ONLY : nag_arctanh, nag_arcsinh, nag_arccosh
! .. Implicit None Statement ..
IMPLICIT NONE
! .. Intrinsic Functions ..
INTRINSIC KIND
! .. Parameters ..
INTEGER, PARAMETER :: n = 4
INTEGER, PARAMETER :: wp = KIND(1.0D0)
! .. Local Scalars ..
INTEGER :: i
REAL (wp) :: y
! .. Local Arrays ..
REAL (wp) : : x (n)
! .. Executable Statements ..
WRITE (nag_std_out,*) 'Example Program Results for nag_inv_hyp_fun_ex01'
WRITE (nag_std_out,*)
WRITE (nag_std_out,*) , x arctanh(x),
x = (/ -0.5_wp, 0.0_wp, 0.5_wp, -0.9999_wp/)
DO i = 1, n
    y = nag_arctanh(x(i))
    WRITE (nag_std_out,'(1X,1P,2E12.3)') x(i), y
END DO
WRITE (nag_std_out,*)
WRITE (nag_std_out,*) , x arcsinh(x)'
x = (/ -2.0_wp, -0.5_wp, 1.0_wp, 6.0_wp/)
DO i = 1, n
    y = nag_arcsinh(x(i))
    WRITE (nag_std_out,'(1X,1P,2E12.3)') x(i), y
END DO
WRITE (nag_std_out,*)
WRITE (nag_std_out,*) , x arccosh(x)'
x = (/ 1.0_wp, 2.0_wp, 5.0_wp, 10.0_wp/)
DO i = 1, n
```

$\mathrm{y}=$ nag_arccosh(x(i))

WRITE (nag_std_out,'(1X,1P,2E12.3)') x(i), y END DO

END PROGRAM nag_inv_hyp_fun_ex01

2 Program Data

None.

3 Program Results

Example Program Results for nag_inv_hyp_fun_ex01

x	$\operatorname{arctanh}(x)$
$-5.000 \mathrm{E}-01$	$-5.493 \mathrm{E}-01$
$0.000 \mathrm{E}+00$	$0.000 \mathrm{E}+00$
$5.000 \mathrm{E}-01$	$5.493 \mathrm{E}-01$
$-9.999 \mathrm{E}-01$	$-4.952 \mathrm{E}+00$
x	$\operatorname{arcsinh}(\mathrm{x})$
$-2.000 \mathrm{E}+00$	$-1.444 \mathrm{E}+00$
$-5.000 \mathrm{E}-01$	$-4.812 \mathrm{E}-01$
$1.000 \mathrm{E}+00$	$8.814 \mathrm{E}-01$
$6.000 \mathrm{E}+00$	$2.492 \mathrm{E}+00$
x	$\operatorname{arccosh}(\mathrm{x})$
$1.000 \mathrm{E}+00$	$0.000 \mathrm{E}+00$
$2.000 \mathrm{E}+00$	$1.317 \mathrm{E}+00$
$5.000 \mathrm{E}+00$	$2.292 \mathrm{E}+00$
$1.000 \mathrm{E}+01$	$2.993 \mathrm{E}+00$

Additional Examples

Not all example programs supplied with NAG $f l 90$ appear in full in this module document. The following additional examples, associated with this module, are available.
nag_inv_hyp_fun_ex02
Evaluation of an approximation to the inverse hyperbolic sine.
nag_inv_hyp_fun_ex03
Evaluation of an approximation to the inverse hyperbolic cosine.
nag_inv_hyp_fun_ex04
Evaluation of an approximation to the inverse hyperbolic tangent.

References

[1] Abramowitz M and Stegun I A (1972) Handbook of Mathematical Functions Dover Publications (3rd Edition)

