Module 3.1: nag_inv_hyp_fun Inverse Hyperbolic Functions

<code>nag_inv_hyp_fun</code> contains procedures for approximating the inverse hyperbolic functions arctanh, arcsinh and arccosh with real arguments.

Contents

Procedures

nag_arctanhInverse hyperbolic tangent, $\operatorname{arctanh} x$	3.1.3
nag_arcsinh Inverse hyperbolic sine, arcsinh <i>x</i>	3.1.5
nag_arccoshInverse hyperbolic cosine, $\operatorname{arccosh} x$	3.1.7
Examples	
Example 1: Evaluation of the Inverse Hyperbolic Functions	3.1.9
Additional Examples	3.1.11
References	3.1.12

Module Contents

Procedure: nag_arctanh

1 Description

nag_arctanh calculates an approximate value for the inverse hyperbolic tangent, $\operatorname{arctanh} x$, where x is real (Abramowitz and Stegun [1], Chapter 4.6).

2 Usage

USE nag_inv_hyp_fun

[value =] nag_arctanh(x [, optional arguments])

The function result is a scalar, of type real(kind=wp), containing arctanh x.

3 Arguments

3.1 Mandatory Argument

 \mathbf{x} — real(kind=wp), intent(in) Input: the argument x of the function. Constraints: $|\mathbf{x}| < 1.0$.

3.2 Optional Argument

error — type(nag_error), intent(inout), optional

The NAG *fl*90 error-handling argument. See the Essential Introduction, or the module document nag_error_handling (1.2). You are recommended to omit this argument if you are unsure how to use it. If this argument is supplied, it *must* be initialized by a call to nag_set_error before this procedure is called.

4 Error Codes

Fatal errors (error%level = 3):

error%code Description

301 An input argument has an invalid value.

5 Examples of Usage

A complete example of the use of this procedure appears in Example 1 of this module document.

6 Further Comments

6.1 Algorithmic Detail

• For $x^2 \leq \frac{1}{2}$, the procedure uses a Chebyshev expansion of the form

$$\operatorname{arctanh} x = x \times y(t) = x \sum_{r=0}^{\prime} a_r T_r(t)$$

where
$$-\frac{1}{\sqrt{2}} \le x \le \frac{1}{\sqrt{2}}$$
, $-1 \le t \le 1$, and $t = 4x^2 - 1$.

• For $\frac{1}{2} < x^2 < 1$, it uses

$$\operatorname{arctanh} x = \frac{1}{2} \ln \left(\frac{1+x}{1-x} \right).$$

• For $|x| \ge 1$, the procedure fails as arctanh x is undefined.

6.2 Accuracy

If δ and ε are the relative errors in the argument and result, respectively, then in principle

$$\varepsilon|\simeq |\theta\delta|, \text{ where } \theta = \frac{x}{(1-x^2)\operatorname{arctanh} x}.$$

That is, the relative error in the argument, x, is amplified by at least a factor θ in the result. The equality should hold if δ is greater than EPSILON(1.0_wp) (i.e., if δ is due to data errors etc.) but if δ is simply due to round-off in the machine representation then it is possible that an extra figure may be lost in internal calculation round-off.

The behaviour of the amplification factor is shown in Figure 1.

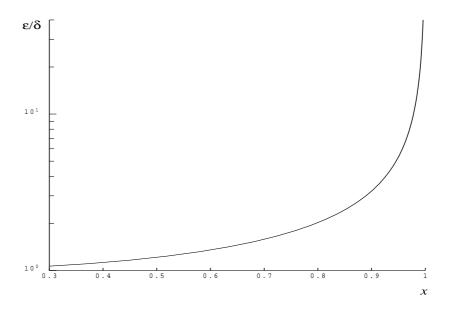


Figure 1: The error amplification factor θ .

The factor is not significantly greater than one except for arguments close to |x| = 1. However, in the region where |x| is close to one, $1 - |x| \sim \delta$, the above analysis is inapplicable since x is bounded by definition, |x| < 1. In this region where arctanh is tending to infinity we have $\varepsilon \sim 1/\ln \delta$ which implies an obvious, unavoidable serious loss of accuracy near $|x| \sim 1$; e.g., if x and 1 agree to 6 significant figures, the result for arctanh x would be correct to at most about one figure.

Procedure: nag_arcsinh

1 Description

nag_arcsinh calculates an approximate value for the inverse hyperbolic sine, $\operatorname{arcsinh} x$, where x is real (Abramowitz and Stegun [1], Chapter 4.6).

2 Usage

USE nag_inv_hyp_fun

[value =] nag_arcsinh(x)

The function result is a scalar, of type real(kind=wp), containing arcsinh x.

3 Arguments

3.1 Mandatory Argument

 \mathbf{x} — real(kind=wp), intent(in) Input: the argument x of the function.

4 Error Codes

None.

5 Examples of Usage

A complete example of the use of this procedure appears in Example 1 of this module document.

6 Further Comments

6.1 Algorithmic Detail

• For $|x| \leq 1$ the procedure uses a Chebyshev expansion of the form

$$\operatorname{arcsinh} x = x \times y(t) = x \sum_{r=0}^{\prime} c_r T_r(t), \text{ where } t = 2x^2 - 1.$$

• For |x| > 1 it uses the fact that

 $\operatorname{arcsinh} x = \operatorname{sign} x \times \ln\left(|x| + \sqrt{x^2 + 1}\right).$

This form is used directly for $1 < |x| < 10^k$, where k = n/2+1, and the machine uses approximately n decimal place arithmetic.

• For $|x| \ge 10^k$, $\sqrt{x^2 + 1}$ is equal to |x| to within the accuracy of the machine and hence we can guard against premature overflow and, without loss of accuracy, calculate

 $\operatorname{arcsinh} x = \operatorname{sign} x \times (\ln 2 + \ln |x|).$

6.2 Accuracy

If δ and ε are the relative errors in the argument and the result, respectively, then in principle

$$|\varepsilon| \simeq |\theta\delta|$$
, where $\theta = \frac{x}{\sqrt{1+x^2}\operatorname{arcsinh} x}$.

That is, the relative error in the argument, x, is amplified by a factor at least θ , in the result.

The equality should hold if δ is greater than EPSILON(1.0_wp) (i.e., if δ is due to data errors etc.) but if δ is simply due to round-off in the machine representation it is possible that an extra figure may be lost in internal calculation round-off.

The behaviour of the amplification factor is shown in Figure 2.

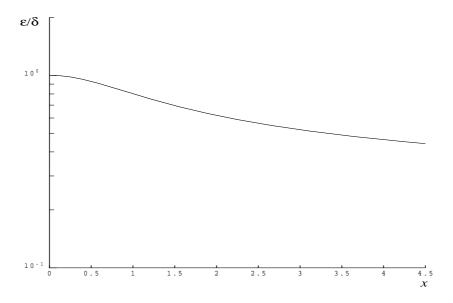


Figure 2: The error amplification factor θ .

It should be noted that this factor is always less than or equal to one. For large x we have the absolute error in the result, E, in principle, given by $E \sim \delta$. This means that eventually accuracy is limited by EPSILON(1.0_wp).

Procedure: nag_arccosh

1 Description

nag_arccosh calculates an approximate value for the inverse hyperbolic cosine, $\operatorname{arccosh} x$, where x is real (Abramowitz and Stegun [1], Chapter 4.6).

2 Usage

USE nag_inv_hyp_fun

[value =] nag_arccosh(x [, optional arguments])

The function result is a scalar, of type real(kind=wp), containing arccosh x.

3 Arguments

3.1 Mandatory Argument

 \mathbf{x} — real(kind=wp), intent(in) Input: the argument x of the function. Constraints: $\mathbf{x} \ge 1.0$.

3.2 Optional Argument

error — type(nag_error), intent(inout), optional

The NAG *fl*90 error-handling argument. See the Essential Introduction, or the module document nag_error_handling (1.2). You are recommended to omit this argument if you are unsure how to use it. If this argument is supplied, it *must* be initialized by a call to nag_set_error before this procedure is called.

4 Error Codes

Fatal errors (error%level = 3):

error%code Description

301 An input argument has an invalid value.

5 Examples of Usage

A complete example of the use of this procedure appears in Example 1 of this module document.

6 Further Comments

6.1 Algorithmic Detail

The result is based on the relation

 $\operatorname{arccosh} x = \ln(x + \sqrt{x^2 - 1}),$

where the square root is taken to be positive.

This form is used directly for $1 < x < 10^k$, where k = n/2 + 1, and the machine uses approximately n decimal place arithmetic.

For $x \ge 10^k$, $\sqrt{x^2 - 1}$ is equal to \sqrt{x} to within the accuracy of the machine and hence we can guard against premature overflow and, without loss of accuracy, calculate

 $\operatorname{arccosh} x = \ln 2 + \ln x.$

6.2 Accuracy

If δ and ε are the relative errors in the argument and result respectively, then in principle

$$|\varepsilon| \simeq |\theta \delta|$$
, where $\theta = \frac{x}{\sqrt{x^2 - 1 \operatorname{arccosh} x}}$.

That is, the relative error in the argument is amplified by a factor at least θ in the result. The equality should apply if δ is greater than EPSILON(1.0_wp) (i.e., if δ is due to data errors etc.) but if δ is simply a result of round-off in the machine representation it is possible that an extra figure may be lost in internal calculation and round-off.

The behaviour of the amplification factor is shown Figure 3.

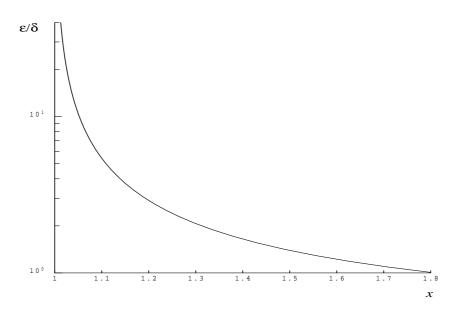


Figure 3: The error amplification factor θ .

It should be noted that for x > 2 the factor is always less than 1.0. For large x we have the absolute error E in the result, in principle, given by $E \sim \delta$. This means that eventually accuracy is limited by EPSILON(1.0_wp). More significantly, for x close to 1, $x-1 \sim \delta$, the above analysis becomes inapplicable due to the fact that both function and argument are bounded, $x \ge 1$, $\operatorname{arccosh} x \ge 0$. In this region we have $E \sim \sqrt{\delta}$. That is, there will be approximately half as many decimal places correct in the result as there were correct figures in the argument.

Example 1: Evaluation of the Inverse Hyperbolic Functions

This example program evaluates the functions nag_arctanh, nag_arcsinh, and nag_arccosh at a set of real values of the argument x.

1 Program Text

Note. The listing of the example program presented below is double precision. Single precision users are referred to Section 5.2 of the Essential Introduction for further information.

```
PROGRAM nag_inv_hyp_fun_ex01
```

```
! Example Program Text for nag_inv_hyp_fun
! NAG f190, Release 3. NAG Copyright 1997.
! .. Use Statements ..
USE nag_examples_io, ONLY : nag_std_out
USE nag_inv_hyp_fun, ONLY : nag_arctanh, nag_arcsinh, nag_arccosh
! .. Implicit None Statement ..
IMPLICIT NONE
! .. Intrinsic Functions ..
INTRINSIC KIND
! .. Parameters ..
INTEGER, PARAMETER :: n = 4
INTEGER, PARAMETER :: wp = KIND(1.0D0)
! .. Local Scalars ..
INTEGER :: i
REAL (wp) :: y
! .. Local Arrays ..
REAL (wp) :: x(n)
! .. Executable Statements ..
WRITE (nag_std_out,*) 'Example Program Results for nag_inv_hyp_fun_ex01'
WRITE (nag_std_out,*)
WRITE (nag_std_out,*) '
                                      arctanh(x)'
                           х
x = (/ -0.5_wp, 0.0_wp, 0.5_wp, -0.9999_wp/)
DO i = 1, n
 y = nag_arctanh(x(i))
 WRITE (nag_std_out, '(1X, 1P, 2E12.3)') x(i), y
END DO
WRITE (nag_std_out,*)
WRITE (nag_std_out,*) '
                                      arcsinh(x)'
                            х
x = (/ -2.0_wp, -0.5_wp, 1.0_wp, 6.0_wp/)
DO i = 1, n
  y = nag_arcsinh(x(i))
 WRITE (nag_std_out,'(1X,1P,2E12.3)') x(i), y
END DO
WRITE (nag_std_out,*)
WRITE (nag_std_out,*) '
                                     arccosh(x)'
                            x
x = (/ 1.0_wp, 2.0_wp, 5.0_wp, 10.0_wp/)
DO i = 1, n
```

```
y = nag_arccosh(x(i))
WRITE (nag_std_out,'(1X,1P,2E12.3)') x(i), y
END DO
```

END PROGRAM nag_inv_hyp_fun_ex01

2 Program Data

None.

3 Program Results

Example Program Results for nag_inv_hyp_fun_ex01

arctanh(x) х -5.000E-01 -5.493E-01 0.000E+00 0.000E+00 5.000E-01 5.493E-01 -9.999E-01 -4.952E+00 arcsinh(x) x -2.000E+00 -1.444E+00 -5.000E-01 -4.812E-01 1.000E+00 8.814E-01 6.000E+00 2.492E+00 arccosh(x) х 1.000E+00 0.000E+00 2.000E+00 1.317E+00 5.000E+00 2.292E+00 1.000E+01 2.993E+00

Additional Examples

Not all example programs supplied with NAG fl90 appear in full in this module document. The following additional examples, associated with this module, are available.

nag_inv_hyp_fun_ex02

Evaluation of an approximation to the inverse hyperbolic sine.

nag_inv_hyp_fun_ex03

Evaluation of an approximation to the inverse hyperbolic cosine.

nag_inv_hyp_fun_ex04

Evaluation of an approximation to the inverse hyperbolic tangent.

References

 Abramowitz M and Stegun I A (1972) Handbook of Mathematical Functions Dover Publications (3rd Edition)