Module 3.5: nag_fresnel_intg Fresnel Integrals

nag_fresnel_intg contains procedures for approximating the Fresnel integrals S(x) and C(x).

Contents

Introduction	3.5.3
Procedures	
nag_fresnel_s Fresnel integral $S(x)$	3.5.5
nag_fresnel_c Fresnel integral $C(x)$	3.5.7
Examples	
Example 1: Evaluation of the Fresnel Integrals	3.5.9
Additional Examples	3.5.11
References	3.5.12

Module Contents

Introduction

This module contains procedures for approximating Fresnel integrals.

• nag_fresnel_s approximates the Fresnel integral

$$S(x) = \int_0^x \sin\left(\frac{\pi}{2}t^2\right) dt.$$

• nag_fresnel_c approximates the Fresnel integral

$$C(x) = \int_0^x \cos\left(\frac{\pi}{2}t^2\right) dt.$$

Further details of Fresnel integrals may be found in Abramowitz and Stegun [1], Chapter 7.

In general the approximations are based on expansions in terms of Chebyshev polynomials $T_r(t) = \cos(r \arccos t)$. Further details appear in Section 6.1 of the individual procedure documents.

Procedure: nag_fresnel_s

1 Description

nag_fresnel_s evaluates an approximation to the Fresnel integral

$$S(x) = \int_0^x \sin\left(\frac{\pi}{2}t^2\right) dt.$$

2 Usage

USE nag_fresnel_intg

[value =] nag_fresnel_s(x)

The function result is a scalar, of type real(kind=wp), containing S(x).

3 Arguments

3.1 Mandatory Argument

 \mathbf{x} — real(kind=wp), intent(in) Input: the argument x of the function.

4 Error Codes

None.

5 Examples of Usage

A complete example of the use of this procedure appears in Example 1 of this module document.

6 Further Comments

6.1 Algorithmic Detail

Since S(x) = -S(-x) it is only necessary to consider the case $x \ge 0.0$.

• For $0 < x \leq 3$, the procedure uses a Chebyshev expansion of the form

$$S(x) = x^3 \sum_{r=0}^{\prime} a_r T_r(t)$$
, with $t = 2\left(\frac{x}{3}\right)^4 - 1$

• For x > 3, it uses

$$S(x) = \frac{1}{2} - \frac{f(x)}{x} \cos\left(\frac{\pi}{2}x^2\right) - \frac{g(x)}{x^3} \sin\left(\frac{\pi}{2}x^2\right),$$

where $f(x) = \sum_{r=0}^{\prime} b_r T_r(t)$, and $g(x) = \sum_{r=0}^{\prime} c_r T_r(t)$, with $t = 2\left(\frac{3}{x}\right)^4 - 1$.

• For small $x, S(x) \simeq \pi x^3/6$. This approximation is used when x is sufficiently small for the result to be correct to EPSILON(1.0_wp). For very small x, this approximation would underflow; the result is then set exactly to zero.

• For large x, $f(x) \simeq 1/\pi$ and $g(x) \simeq 1/\pi^2$. Therefore for moderately large x, when $1/(\pi^2 x^3)$ is negligible compared with 0.5, the second term in the approximation for x > 3 may be dropped. For very large x, when $1/(\pi x)$ becomes negligible, $S(x) \simeq 0.5$. However there will be considerable difficulties in calculating $\cos(\pi x^2/2)$ accurately before this final limiting value can be used. Since $\cos(\pi x^2/2)$ is periodic, its value is essentially determined by the fractional part of x^2 . If $x^2 = N + \theta$ where N is an integer and $0 \le \theta < 1$, then $\cos(\pi x^2/2)$ depends on θ and on N modulo 4. By exploiting this fact, it is possible to retain significance in the calculation of $\cos(\pi x^2/2)$ either all the way to the very large x limit or at least until the integer part of x/2 is equal to the maximum integer allowed on the machine.

6.2 Accuracy

Let δ and ε be the relative errors in the argument and result respectively.

If δ is somewhat larger than EPSILON(1.0_wp) (i.e., if δ is due to data errors etc.), then ε and δ are approximately related by:

$$\varepsilon \simeq |\theta|\delta$$
, where $\theta = \frac{x\sin(\pi x^2/2)}{S(x)}$.

The behaviour of the error amplification factor $|\theta|$ is shown in Figure 1.

Figure 1: The error amplification factor $|\theta|$.

However, if δ is of the same order as EPSILON(1.0_wp), then rounding errors could make ε slightly larger than the above relation predicts.

For small $x, \varepsilon \simeq 3\delta$ and hence there is only moderate amplification of relative error. Of course for very small x where the correct result would underflow and exact zero is returned, relative error-control is lost.

For moderately large values of x, $|\varepsilon| \simeq |2x\sin(\pi x^2/2)||\delta|$ and the result will be subject to increasingly large amplification of errors. However, the above relation breaks down for large values of x (i.e., when $1/x^2$ is of the order of EPSILON(1.0_wp); in this region the relative error in the result is essentially bounded by $2/(\pi x)$).

Hence, the effects of error amplification are limited and at worst the relative error loss should not exceed half the possible number of significant figures.

Procedure: nag_fresnel_c

Description 1

nag_fresnel_c evaluates an approximation to the Fresnel integral

$$C(x) = \int_0^x \cos\left(\pi t^2/2\right) dt.$$

$\mathbf{2}$ Usage

USE nag_fresnel_intg

[value =] nag_fresnel_c(x)

The function result is a scalar, of type real(kind=wp), containing C(x).

3 Arguments

3.1Mandatory Argument

```
\mathbf{x} - \text{real}(\text{kind}=wp), \text{intent}(\text{in})
        Input: the argument x of the function.
```

Error Codes 4

None.

5 **Examples of Usage**

A complete example of the use of this procedure appears in Example 1 of this module document.

Further Comments 6

6.1 Algorithmic Detail

Since C(x) = -C(-x) it is only necessary to consider the case $x \ge 0.0$.

• For $0 < x \leq 3$, the procedure uses a Chebyshev expansion of the form

$$C(x) = x \sum_{r=0}^{\prime} a_r T_r(t)$$
, with $t = 2\left(\frac{x}{3}\right)^4 - 1$.

• For x > 3, it uses

r=0

$$C(x) = \frac{1}{2} + \frac{f(x)}{x} \sin(\pi x^2/2) - \frac{g(x)}{x^3} \cos(\pi x^2/2),$$

where $f(x) = \sum_{r=0}^{\prime} b_r T_r(t)$, and $g(x) = \sum_{r=0}^{\prime} c_r T_r(t)$, with $t = 2\left(\frac{3}{x}\right)^4 - \frac{1}{2}$

• For small $x, C(x) \simeq x$. This approximation is used when x is sufficiently small for the result to be correct to EPSILON(1.0_wp).

1.

• For large x, $f(x) \simeq 1/\pi$ and $g(x) \simeq 1/\pi^2$. Therefore for moderately large x, when $1/(\pi^2 x^3)$ is negligible compared with 0.5, the second term in the approximation for x > 3 may be dropped. For very large x, when $1/(\pi x)$ becomes negligible, $C(x) \simeq 0.5$. However there will be considerable difficulties in calculating $\sin(\pi x^2/2)$ accurately before this final limiting value can be used. Since $\sin(\pi x^2/2)$ is periodic, its value is essentially determined by the fractional part of x^2 . If $x^2 = N + \theta$, where N is an integer and $0 \le \theta < 1$, then $\sin(\pi x^2/2)$ depends on θ and on N modulo 4. By exploiting this fact, it is possible to retain some significance in the calculation of $\sin(\pi x^2/2)$ either all the way to the very large x limit or at least until the integer part of x/2 is equal to the maximum integer allowed on the machine.

6.2 Accuracy

Let δ and ε be the relative errors in the argument and result respectively.

If δ is somewhat larger than EPSILON(1.0_wp) (i.e., if δ is due to data errors etc.), then ε and δ are approximately related by:

$$\varepsilon \simeq |\theta|\delta$$
, where $\theta = \frac{x\cos(\pi x^2/2)}{C(x)}$.

The behaviour of the error amplification factor $|\theta|$ is shown in Figure 2.

Figure 2: The error amplification factor $|\theta|$.

However if δ is of the same order as EPSILON(1.0_wp), then rounding errors could make ε slightly larger than the above relation predicts.

For small $x, \varepsilon \simeq \delta$ and there is no amplification of relative error.

For moderately large values of x, $|\varepsilon| \simeq |2x\cos(\pi x^2/2)||\delta|$ and the result will be subject to increasingly large amplification of errors. However, the above relation breaks down for large values of x (i.e., when $1/x^2$ is of the order of EPSILON(1.0_wp)); in this region the relative error in the result is essentially bounded by $2/(\pi x)$).

Hence, the effects of error amplification are limited and at worst the relative error loss should not exceed half the possible number of significant figures.

Example 1: Evaluation of the Fresnel Integrals

This example program evaluates the functions nag_fresnel_s and nag_fresnel_c at a set of values of the argument x.

1 Program Text

Note. The listing of the example program presented below is double precision. Single precision users are referred to Section 5.2 of the Essential Introduction for further information.

```
PROGRAM nag_fresnel_intg_ex01
```

```
! Example Program Text for nag_fresnel_intg
! NAG f190, Release 3. NAG Copyright 1997.
! .. Use Statements ..
USE nag_examples_io, ONLY : nag_std_out
USE nag_fresnel_intg, ONLY : nag_fresnel_s, nag_fresnel_c
! .. Implicit None Statement ..
IMPLICIT NONE
! .. Intrinsic Functions ..
INTRINSIC KIND
! .. Parameters ..
INTEGER, PARAMETER :: n = 11
INTEGER, PARAMETER :: wp = KIND(1.0D0)
! .. Local Scalars ..
INTEGER :: i
REAL (wp) :: c_x, s_x
! .. Local Arrays ..
REAL (wp) :: x(n)
! .. Executable Statements ..
WRITE (nag_std_out,*) &
 'Example Program Results for nag_fresnel_intg_ex01'
WRITE (nag_std_out,*)
WRITE (nag_std_out,*) '
                                        S(x)
                                                    C(x),
                           х
x = (/ -1.0_wp, 0.0_wp, 0.5_wp, 1.0_wp, 2.0_wp, 4.0_wp, 5.0_wp, 6.0_wp, &
8.0_wp, 10.0_wp, 1000.0_wp/)
DO i = 1, n
  s_x = nag_fresnel_s(x(i))
  c_x = nag_fresnel_c(x(i))
  WRITE (nag_std_out,fmt='(1X,1P,3E12.3)') x(i), s_x, c_x
END DO
```

END PROGRAM nag_fresnel_intg_ex01

2 Program Data

None.

3 Program Results

Example Program Results for nag_fresnel_intg_ex01

x	S(x)	C(x)
-1.000E+00	-4.383E-01	-7.799E-01
0.000E+00	0.000E+00	0.000E+00
5.000E-01	6.473E-02	4.923E-01
1.000E+00	4.383E-01	7.799E-01
2.000E+00	3.434E-01	4.883E-01
4.000E+00	4.205E-01	4.984E-01
5.000E+00	4.992E-01	5.636E-01
6.000E+00	4.470E-01	4.995E-01
8.000E+00	4.602E-01	4.998E-01
1.000E+01	4.682E-01	4.999E-01
1.000E+03	4.997E-01	5.000E-01

Additional Examples

Not all example programs supplied with NAG $f\!l90$ appear in full in this module document. The following additional examples, associated with this module, are available.

nag_fresnel_intg_ex02

Evaluation of the Fresnel integral S(x).

nag_fresnel_intg_ex03

Evaluation of the Fresnel integral C(x).

References

 Abramowitz M and Stegun I A (1972) Handbook of Mathematical Functions Dover Publications (3rd Edition)