Module 3.5: nag_fresnel_intg Fresnel Integrals

nag_fresnel_intg contains procedures for approximating the Fresnel integrals $S(x)$ and $C(x)$.

Contents

Introduction 3.5.3
Procedures
nag_fresnel_s 3.5.5Fresnel integral $S(x)$
nag_fresnel_c 3.5.7Fresnel integral $C(x)$
Examples
Example 1: Evaluation of the Fresnel Integrals 3.5.9
Additional Examples 3.5.11
References 3.5.12

Introduction

This module contains procedures for approximating Fresnel integrals.

- nag_fresnel_s approximates the Fresnel integral

$$
S(x)=\int_{0}^{x} \sin \left(\frac{\pi}{2} t^{2}\right) d t
$$

- nag_fresnel_c approximates the Fresnel integral

$$
C(x)=\int_{0}^{x} \cos \left(\frac{\pi}{2} t^{2}\right) d t
$$

Further details of Fresnel integrals may be found in Abramowitz and Stegun [1], Chapter 7.
In general the approximations are based on expansions in terms of Chebyshev polynomials $T_{r}(t)=$ $\cos (r \arccos t)$. Further details appear in Section 6.1 of the individual procedure documents.

Procedure: nag_fresnel_s

1 Description

nag_fresnel_s evaluates an approximation to the Fresnel integral

$$
S(x)=\int_{0}^{x} \sin \left(\frac{\pi}{2} t^{2}\right) d t
$$

2 Usage

USE nag_fresnel_intg
[value =] nag_fresnel_s (x)
The function result is a scalar, of type real(kind=wp), containing $S(x)$.

3 Arguments

3.1 Mandatory Argument

$\mathbf{x}-\operatorname{real}(\operatorname{kind}=w p)$, intent(in)
Input: the argument x of the function.

4 Error Codes

None.

5 Examples of Usage

A complete example of the use of this procedure appears in Example 1 of this module document.

6 Further Comments

6.1 Algorithmic Detail

Since $S(x)=-S(-x)$ it is only necessary to consider the case $x \geq 0.0$.

- For $0<x \leq 3$, the procedure uses a Chebyshev expansion of the form

$$
S(x)=x^{3} \sum_{r=0}^{\prime} a_{r} T_{r}(t), \quad \text { with } t=2\left(\frac{x}{3}\right)^{4}-1
$$

- For $x>3$, it uses

$$
S(x)=\frac{1}{2}-\frac{f(x)}{x} \cos \left(\frac{\pi}{2} x^{2}\right)-\frac{g(x)}{x^{3}} \sin \left(\frac{\pi}{2} x^{2}\right),
$$

where $f(x)=\sum_{r=0}^{\prime} b_{r} T_{r}(t)$, and $g(x)=\sum_{r=0}^{\prime} c_{r} T_{r}(t)$, with $t=2\left(\frac{3}{x}\right)^{4}-1$.

- For small $x, S(x) \simeq \pi x^{3} / 6$. This approximation is used when x is sufficiently small for the result to be correct to EPSILON (1.0_wp). For very small x, this approximation would underflow; the result is then set exactly to zero.
- For large $x, f(x) \simeq 1 / \pi$ and $g(x) \simeq 1 / \pi^{2}$. Therefore for moderately large x, when $1 /\left(\pi^{2} x^{3}\right)$ is negligible compared with 0.5 , the second term in the approximation for $x>3$ may be dropped. For very large x, when $1 /(\pi x)$ becomes negligible, $S(x) \simeq 0.5$. However there will be considerable difficulties in calculating $\cos \left(\pi x^{2} / 2\right)$ accurately before this final limiting value can be used. Since $\cos \left(\pi x^{2} / 2\right)$ is periodic, its value is essentially determined by the fractional part of x^{2}. If $x^{2}=N+\theta$ where N is an integer and $0 \leq \theta<1$, then $\cos \left(\pi x^{2} / 2\right)$ depends on θ and on N modulo 4. By exploiting this fact, it is possible to retain significance in the calculation of $\cos \left(\pi x^{2} / 2\right)$ either all the way to the very large x limit or at least until the integer part of $x / 2$ is equal to the maximum integer allowed on the machine.

6.2 Accuracy

Let δ and ε be the relative errors in the argument and result respectively.
If δ is somewhat larger than EPSILON(1.0_wp) (i.e., if δ is due to data errors etc.), then ε and δ are approximately related by:

$$
\varepsilon \simeq|\theta| \delta, \quad \text { where } \theta=\frac{x \sin \left(\pi x^{2} / 2\right)}{S(x)}
$$

The behaviour of the error amplification factor $|\theta|$ is shown in Figure 1.

Figure 1: The error amplification factor $|\theta|$.
However, if δ is of the same order as EPSILON (1.0_wp), then rounding errors could make ε slightly larger than the above relation predicts.

For small $x, \varepsilon \simeq 3 \delta$ and hence there is only moderate amplification of relative error. Of course for very small x where the correct result would underflow and exact zero is returned, relative error-control is lost.
For moderately large values of $x,|\varepsilon| \simeq\left|2 x \sin \left(\pi x^{2} / 2\right)\right||\delta|$ and the result will be subject to increasingly large amplification of errors. However, the above relation breaks down for large values of x (i.e., when $1 / x^{2}$ is of the order of $\operatorname{EPSILON}\left(1.0_{-} w p\right)$; in this region the relative error in the result is essentially bounded by $2 /(\pi x))$.

Hence, the effects of error amplification are limited and at worst the relative error loss should not exceed half the possible number of significant figures.

Procedure: nag_fresnel_c

1 Description

nag_fresnel_c evaluates an approximation to the Fresnel integral

$$
C(x)=\int_{0}^{x} \cos \left(\pi t^{2} / 2\right) d t
$$

2 Usage

USE nag_fresnel_intg
[value =] nag_fresnel_c (x)
The function result is a scalar, of type real (kind=wp), containing $C(x)$.

3 Arguments

3.1 Mandatory Argument

$\mathbf{x}-\operatorname{real}(\operatorname{kind}=w p)$, intent(in)
Input: the argument x of the function.

4 Error Codes

None.

5 Examples of Usage

A complete example of the use of this procedure appears in Example 1 of this module document.

6 Further Comments

6.1 Algorithmic Detail

Since $C(x)=-C(-x)$ it is only necessary to consider the case $x \geq 0.0$.

- For $0<x \leq 3$, the procedure uses a Chebyshev expansion of the form

$$
C(x)=x \sum_{r=0}^{\prime} a_{r} T_{r}(t), \quad \text { with } \quad t=2\left(\frac{x}{3}\right)^{4}-1
$$

- For $x>3$, it uses

$$
C(x)=\frac{1}{2}+\frac{f(x)}{x} \sin \left(\pi x^{2} / 2\right)-\frac{g(x)}{x^{3}} \cos \left(\pi x^{2} / 2\right)
$$

where $f(x)=\sum_{r=0}^{\prime} b_{r} T_{r}(t)$, and $g(x)=\sum_{r=0}^{\prime} c_{r} T_{r}(t)$, with $t=2\left(\frac{3}{x}\right)^{4}-1$.

- For small $x, C(x) \simeq x$. This approximation is used when x is sufficiently small for the result to be correct to EPSILON(1.0_wp).
- For large $x, f(x) \simeq 1 / \pi$ and $g(x) \simeq 1 / \pi^{2}$. Therefore for moderately large x, when $1 /\left(\pi^{2} x^{3}\right)$ is negligible compared with 0.5 , the second term in the approximation for $x>3$ may be dropped. For very large x, when $1 /(\pi x)$ becomes negligible, $C(x) \simeq 0.5$. However there will be considerable difficulties in calculating $\sin \left(\pi x^{2} / 2\right)$ accurately before this final limiting value can be used. Since $\sin \left(\pi x^{2} / 2\right)$ is periodic, its value is essentially determined by the fractional part of x^{2}. If $x^{2}=N+\theta$, where N is an integer and $0 \leq \theta<1$, then $\sin \left(\pi x^{2} / 2\right)$ depends on θ and on N modulo 4. By exploiting this fact, it is possible to retain some significance in the calculation of $\sin \left(\pi x^{2} / 2\right)$ either all the way to the very large x limit or at least until the integer part of $x / 2$ is equal to the maximum integer allowed on the machine.

6.2 Accuracy

Let δ and ε be the relative errors in the argument and result respectively.
If δ is somewhat larger than EPSILON(1.0_wp) (i.e., if δ is due to data errors etc.), then ε and δ are approximately related by:

$$
\varepsilon \simeq|\theta| \delta, \quad \text { where } \theta=\frac{x \cos \left(\pi x^{2} / 2\right)}{C(x)}
$$

The behaviour of the error amplification factor $|\theta|$ is shown in Figure 2.

Figure 2: The error amplification factor $|\theta|$.
However if δ is of the same order as EPSILON (1.0_wp), then rounding errors could make ε slightly larger than the above relation predicts.

For small $x, \varepsilon \simeq \delta$ and there is no amplification of relative error.
For moderately large values of $x,|\varepsilon| \simeq\left|2 x \cos \left(\pi x^{2} / 2\right)\right||\delta|$ and the result will be subject to increasingly large amplification of errors. However, the above relation breaks down for large values of x (i.e., when $1 / x^{2}$ is of the order of $\operatorname{EPSILON}\left(1.0^{\prime} w p\right)$) ; in this region the relative error in the result is essentially bounded by $2 /(\pi x))$.

Hence, the effects of error amplification are limited and at worst the relative error loss should not exceed half the possible number of significant figures.

Example 1: Evaluation of the Fresnel Integrals

This example program evaluates the functions nag_fresnel_s and nag_fresnel_c at a set of values of the argument x .

1 Program Text

Note. The listing of the example program presented below is double precision. Single precision users are referred to Section 5.2 of the Essential Introduction for further information.

```
PROGRAM nag_fresnel_intg_ex01
    ! Example Program Text for nag_fresnel_intg
    ! NAG fl90, Release 3. NAG Copyright 1997.
    ! .. Use Statements ..
USE nag_examples_io, ONLY : nag_std_out
USE nag_fresnel_intg, ONLY : nag_fresnel_s, nag_fresnel_c
! .. Implicit None Statement ..
IMPLICIT NONE
! .. Intrinsic Functions ..
INTRINSIC KIND
! .. Parameters ..
INTEGER, PARAMETER :: n = 11
INTEGER, PARAMETER :: wp = KIND(1.OD0)
! .. Local Scalars ..
INTEGER :: i
REAL (wp) :: c_x, s_x
! .. Local Arrays ..
REAL (wp) :: x(n)
! .. Executable Statements ..
WRITE (nag_std_out,*) &
    'Example Program Results for nag_fresnel_intg_ex01'
WRITE (nag_std_out,*)
WRITE (nag_std_out,*) , x S(x) C(x)'
x = (/ -1.0_wp, 0.0_wp, 0.5_wp, 1.0_wp, 2.0_wp, 4.0_wp, 5.0_wp, 6.0_wp, &
    8.0_wp, 10.0_wp, 1000.0_wp/)
DO i = 1, n
    s_x = nag_fresnel_s(x(i))
        c_x = nag_fresnel_c(x(i))
        WRITE (nag_std_out,fmt='(1X,1P,3E12.3)') x(i), s_x, c_x
END DO
END PROGRAM nag_fresnel_intg_ex01
```


2 Program Data

None.

3 Program Results

Example Program Results for nag_fresnel_intg_ex01

x	$S(x)$	$C(x)$
$-1.000 \mathrm{E}+00$	$-4.383 \mathrm{E}-01$	$-7.799 \mathrm{E}-01$
$0.000 \mathrm{E}+00$	$0.000 \mathrm{E}+00$	$0.000 \mathrm{E}+00$
$5.000 \mathrm{E}-01$	$6.473 \mathrm{E}-02$	$4.923 \mathrm{E}-01$
$1.000 \mathrm{E}+00$	$4.383 \mathrm{E}-01$	$7.799 \mathrm{E}-01$
$2.000 \mathrm{E}+00$	$3.434 \mathrm{E}-01$	$4.883 \mathrm{E}-01$
$4.000 \mathrm{E}+00$	$4.205 \mathrm{E}-01$	$4.984 \mathrm{E}-01$
$5.000 \mathrm{E}+00$	$4.992 \mathrm{E}-01$	$5.636 \mathrm{E}-01$
$6.000 \mathrm{E}+00$	$4.470 \mathrm{E}-01$	$4.995 \mathrm{E}-01$
$8.000 \mathrm{E}+00$	$4.602 \mathrm{E}-01$	$4.998 \mathrm{E}-01$
$1.000 \mathrm{E}+01$	$4.682 \mathrm{E}-01$	$4.999 \mathrm{E}-01$
$1.000 \mathrm{E}+03$	$4.997 \mathrm{E}-01$	$5.000 \mathrm{E}-01$

Additional Examples

Not all example programs supplied with NAG $f l 90$ appear in full in this module document. The following additional examples, associated with this module, are available.
nag_fresnel_intg_ex02
Evaluation of the Fresnel integral $S(x)$.
nag_fresnel_intg_ex03
Evaluation of the Fresnel integral $C(x)$.

References

[1] Abramowitz M and Stegun I A (1972) Handbook of Mathematical Functions Dover Publications (3rd Edition)

