Optimization Chapter Introduction

Chapter 9

Optimization

1 Scope of the Chapter

This chapter provides procedures for the numerical solution of optimization problems.

An optimization problem involves minimizing a function (called the objective function) of several
variables, possibly subject to restrictions on the values of the variables defined by a set of constraints.
Unless stated otherwise, NAG fl90 procedures are concerned with minimization only, since the problem
of maximizing a given objective function F'(x) is equivalent to minimizing —F'(x).

2 Available Modules

Module 9.1: nag_gp — Linear and Quadratic Programming
Provides a procedure for computing

e a constrained minimum of a linear or quadratic objective function subject to a set of general
linear constraints and/or bounds on the variables. It treats all matrices as dense and hence
is not intended for large sparse problems.

Module 9.2: nag_ nlin_1sq — Unconstrained Nonlinear Least-squares
Provides procedures for computing

e an unconstrained minimum (z*) of a sum of squares of m nonlinear functions in n variables
(where m > n),

e estimates of elements of the variance—covariance matrix at z*.

Module 9.3: nag nlp — Nonlinear Programming
Provides a procedure for computing

e a constrained minimum of an arbitrary smooth objective function subject to a set of general
nonlinear constraints and/or linear constraints and/or bounds on the variables. It treats all
matrices as dense and hence is not intended for large sparse problems.

Module 9.4: nag_con nlin_1sq — Constrained Nonlinear Least-squares
Provides procedures for computing

e a constrained minimum of a smooth (nonlinear) sum of squares function subject to a set of
general nonlinear constraints and/or linear constraints and/or bounds on the variables. It
treats all matrices as dense and hence is not intended for large sparse problems.

Module 9.5: nag_uv_min — Univariate Minimization
Provides a procedure for computing

e a minimum of a continuous function of a single variable in a given finite interval using
safeguarded polynomial approximation.

[NP3506/4] 9.0.1

Chapter Introduction Optimization

Module 9.6: nag nlp_sparse — Sparse Nonlinear Programming
Provides a procedure for computing

e a constrained minimum (or maximum) of an arbitrary smooth objective function subject to a
set of general nonlinear constraints and/or linear constraints and/or bounds on the variables.

3 Background

3.1 Types of Optimization Problems

The solution of optimization problems by a single, all-purpose, method is cumbersome and inefficient.
Optimization problems are therefore classified into particular categories, where each category is defined
by the properties of the objective function and the constraints, as illustrated by the following examples:

Properties of Objective Function Properties of Constraints
Nonlinear Nonlinear

Sums of squares of nonlinear functions Sparse linear

Quadratic Linear

Sums of squares of linear functions Bounds

Linear None

For instance, a specific problem category involves the minimization of a nonlinear objective function
subject to bounds on the variables. Not all categories are catered for by specific procedures in the
current version of the Library; however, the long-term objective is to provide a comprehensive set of
procedures to solve problems in all such categories.

3.2 Geometric Representation and Terminology

To illustrate the nature of optimization problems it is useful to consider the following example:

F(z)=¢e™ (4x% + 2:03 +4xi29 4 229 + 1).

Figure 1

Figure 1 is a contour diagram of F'(x). The contours labelled Fy, F,..., Fy are isovalue contours, or
lines along which F(z) takes specific constant values. The point z* = (3, —1)7T is a local unconstrained

9.0.2 [NP3506/4]

Optimization Chapter Introduction

minimum, i.e., the value of F(z*) (= 0) is less than at all the neighbouring points. A function may
have several such minima. The lowest of the local minima is termed a global minimum. In the problem
illustrated in Figure 1, z* is the only local minimum. A point, such as Z, is said to be a saddle point
because it is a minimum along the line AB, but a maximum along CD.

If we add the constraint z; > 0 (a simple bound) to the problem of minimizing F'(z), the solution remains
unaltered. In Figure 1 this constraint is represented by the straight line passing through x; = 0, and
the shading on the line indicates the unacceptable region (i.e., 1 < 0). The region in R" satisfying the
constraints of an optimization problem is termed the feasible region. A point satisfying the constraints
is defined as a feasible point.

If we add the nonlinear constraint ¢q () : 21+ 22— 2129 — % > 0, represented by the curved shaded line in
Figure 1, then " is not a feasible point because ¢1 (z*) < 0. The solution of the new constrained problem
is & ~ (1.1825, —1.7397)T, the feasible point with the smallest function value (where F(Z) ~ 3.0607).

The vector of first partial derivatives of F'(x) is called the gradient vector, and is denoted by g(z), i.e.,

_ [0F(z) 0F(x) 0F(z)\"
9(x)—< o Oy 6%) .

The gradient vector is of importance in optimization because it must be zero at an unconstrained
minimum of any function with continuous first derivatives.

The matrix of second partial derivatives of a function is termed its Hessian matriz. The Hessian matrix
of F(x) is denoted by G(z), and its (4, j)th element is given by 0?F(z)/0z;0z;. If F(z) has continuous
second derivatives, then G(z) must be positive semi-definite at any unconstrained minimum of F'(z).

The vector of first partial derivatives of the constraint ¢;(x) is denoted by

o) = (2000) Ptn) Bt)

The matrix whose columns are the vectors {a;} is termed the matriz of constraint normals.

At a point Z, the vector a;(Z) is orthogonal (normal) to the isovalue contour of ¢;(z) passing through Z;
this relationship is illustrated for a two-dimensional function in Figure 2.

c(x) =c(X)

Figure 2

Note that if ¢;(z) is a linear constraint involving a;?FL then its vector of first partial derivatives is simply
the vector a;.

3.3 Sufficient Conditions for a Solution

All nonlinear functions will be assumed to have continuous second derivatives in the neighbourhood of
a solution.

[NP3506/4] 9.0.3

Chapter Introduction Optimization

Unconstrained minimization

The following conditions are sufficient for the point z* to be an unconstrained local minimum of F(z):
(a) flg(z*)|| = 0; and
(b) G(x*) is positive definite,

where ||g|| denotes the Euclidean length of g.

Linearly constrained minimization

At a solution z* of a linearly constrained problem, the constraints which hold as equalities are called
the active or binding constraints. Assume that there are ¢ active constraints at the solution z*, and let
A denote the matrix whose columns are the columns of A corresponding to the active constraints, with
b the vector similarly obtained from b; then

ATz =b.
The matrix Z is defined as an n by (n — t) matrix satisfying:
ATz =
7Ztz =1
The columns of Z form an orthonormal basis for the set of vectors orthogonal to the columns of A.
Define
gz(x) = ZTg(x), the projected gradient vector of F(z);

Gyz(x) = ZTG(x)Z, the projected Hessian matrix of F(z).

At the solution of a linearly constrained problem, the projected gradient vector must be zero, which
implies that the gradient vector g(z*) can be written as a linear combination of the columns of A, i.e.,

The scalar A is defined as the Lagrange multiplier corresponding to the ith active constraint. A simple
interpretation of the ith Lagrange multiplier is that it gives the gradient of F'(x) along the ith active
constraint normal; a convenient definition of the Lagrange multiplier vector (although not a recommended
method for computation) is:

A= (ATA) T AT g ().
Sufficient conditions for z* to be the solution of a linearly constrained problem are:
* is feasible, and ATz* = b; and
llgz(z*)|| = 0, or equivalently, g(z*) = AX*; and

) @
)

(¢c) Gz(z") is positive definite; and
)

s

A7 > 0if A} corresponds to a constraint of the form a; * >
Af < 01if A} corresponds to a constraint of the form a < b;.

The sign of A} is immaterial for equality constraints, which by definition are always active.

9.0.4 [NP3506/4]

Optimization Chapter Introduction

Nonlinearly constrained minimization

For nonlinearly constrained problems, much of the terminology is defined exactly as in the linearly
constrained case. The set of active constraints at x again means the set of constraints that hold as
equalities at x, with corresponding definitions of ¢ and A: the vector é(x) contains the active constraint
functions, and the columns of fl(a:) are the gradient vectors of the active constraints. As before, Z is
defined in terms of A(z) as a matrix such that:

AT 7 = 0;
Ztz=1
where the dependence on x has been suppressed for compactness.

The projected gradient vector gz (z) is the vector Z Tg(x). At the solution z* of a nonlinearly constrained
problem, the projected gradient must be zero, which implies the existence of Lagrange multipliers

corresponding to the active constraints, i.e., g(z*) = A(z*)*.
The Lagrangian function is given by:
L(z,\) = F(z) — \¢(x).
We define gz, (z) as the gradient of the Lagrangian function, G, () as its Hessian matrix and G (z) as
its projected Hessian matrix, i.e., GL=2"G.Z.

Sufficient conditions for z* to be the solution of a nonlinearly constrained problem are:
(a) z* is feasible, and é(z*) = 0; and

(b) llgz(z*)| = 0, or equivalently, g(z*) = A(z*)*; and
(c)
)

G (x*) is positive definite; and
(@ X

> 0 if A} corresponds to a constraint of the form ¢é; > 0.
The sign of A} is immaterial for equality constraints, which by definition are always active.

Note that condition (b) implies that the projected gradient of the Lagrangian function must also be zero
at z*, since the application of Z7 annihilates the matrix A(z*).

3.4 Scaling

Scaling (in a broadly defined sense) often has a significant influence on the performance of optimization
methods. Since convergence tolerances and other criteria are necessarily based on an implicit definition
of ‘small’ and ‘large’, problems with unusual or unbalanced scaling may cause difficulties for some
algorithms. Although there are currently no user-callable scaling procedures in the Library, scaling
is automatically performed by default in the procedure which solves sparse nonlinear programming
problems. The following sections present some general comments on problem scaling.

Transformation of variables

One method of scaling is to transform the variables from their original representation, which may reflect
the physical nature of the problem, to variables that have certain desirable properties in terms of
optimization. It is generally helpful for the following conditions to be satisfied:

(a) the variables are all of similar magnitude in the region of interest;

(b) a fixed change in any of the variables results in similar changes in F'(x). Ideally, a unit change in
any variable produces a unit change in F'(z);

(c) the variables are transformed so as to avoid cancellation error in the evaluation of F(x).

[NP3506/4] 9.0.5

Chapter Introduction Optimization

Normally, users should restrict themselves to linear transformations of variables, although occasionally
nonlinear transformations are possible. The most common such transformation (and often the most
appropriate) is of the form

Tnew = onld7

where D is a diagonal matrix with constant coefficients. Our experience suggests that more use should
be made of the transformation

Tnew = -onld + v,

where v is a constant vector.

Scaling the objective function

The objective function has already been mentioned in the discussion of scaling the variables. The solution
of a given problem is unaltered if F'(x) is multiplied by a positive constant, or if a constant value is added
to F(z). It is generally preferable for the objective function to be of the order of unity in the region of
interest; thus, if in the original formulation F(z) is always of the order of 107 (say), then the value of
F(z) should be multiplied by 10~° when evaluating the function within an optimization procedure. If
a constant is added or subtracted in the computation of F(x), usually it should be omitted; i.e., it is
better to formulate F(z) as 2% + x2 rather than as % + 22 4 1000 or even x? + 23 + 1. The inclusion of
such a constant in the calculation of F(z) can result in a loss of significant figures.

Scaling the constraints

A ‘well scaled’ set of constraints has two main properties. Firstly, each constraint should be well
conditioned with respect to perturbations of the variables. Secondly, the constraints should be balanced
with respect to each other, i.e.; all the constraints should have ‘equal weight’ in the solution process.

The solution of a linearly or nonlinearly constrained problem is unaltered if the 7th constraint is multiplied
by a positive weight w;. At the approximation of the solution determined by a Library procedure, any
active linear constraints will (in general) be satisfied ‘exactly’ (i.e., to within the tolerance defined
by EPSILON(1.0_wp)) if they have been properly scaled. This is in contrast to any active nonlinear
constraints, which will not (in general) be satisfied ‘exactly’ but will have ‘small’ values (for example,
é1(z*) = 1078, éy(2*) = —107°% and so on). In general, this discrepancy will be minimized if the
constraints are weighted so that a unit change in = produces a similar change in each constraint.

A second reason for introducing weights is related to the effect of the size of the constraints on the
Lagrange multiplier estimates and, consequently, on the active set strategy. This means that different

sets of weights may cause an algorithm to produce different sequences of iterates. Additional discussion
is given in Gill et al. [1].

3.5 Analysis of Computed Results

Convergence criteria

The convergence criteria inevitably vary from procedure to procedure, since in some cases more
information is available to be checked (for example, is the Hessian matrix positive definite?), and different
checks need to be made for different problem categories (for example, in constrained minimization it is
necessary to verify whether a trial solution is feasible). Nonetheless, the underlying principles of the
various criteria are the same; in non-mathematical terms, they are:

(a) is the sequence {a:(k)} converging?

(b) is the sequence {F (k)} converging?

(c) are the necessary and sufficient conditions for the solution satisfied?

The decision as to whether a sequence is converging is necessarily speculative. The criterion used in
the present procedures is to assume convergence if the relative change occurring between two successive
iterations is less than some prescribed quantity. Criterion (¢) is the most reliable but often the conditions
cannot be checked fully because not all the required information may be available.

9.0.6 [NP3506/4]

Optimization Chapter Introduction

Checking results

Little a priori guidance can be given as to the quality of the solution found by a nonlinear optimization
algorithm, since no guarantees can be given that the methods will not fail. Therefore, you should always
check the computed solution even if the procedure reports success. Frequently a ‘solution’ may have been
found even when the procedure does not report a success. The reason for this apparent contradiction is
that the procedure needs to assess the accuracy of the solution. This assessment is not an exact process
and consequently may be unduly pessimistic. Any ‘solution’ is in general only an approximation to the
exact solution, and it is possible that the requirements for ‘success’ are too stringent.

Further confirmation can be sought by trying to check whether or not convergence tests are almost
satisfied, or whether or not some of the sufficient conditions are nearly satisfied. When it is thought that
a procedure has returned a non-zero value of errorlevel only because the requirements for ‘success’
were too stringent it may be worth restarting with increased convergence tolerances.

Confidence in a solution may be increased by re-solving the problem with a different initial approximation
to the solution. See Section 8.3 of Gill et al. [1] for further information.

Monitoring progress

Some of the procedures in this chapter have facilities to allow you to monitor the progress of the
minimization process, and you are encouraged to make use of these facilities. Monitoring information
can be a great aid in assessing whether or not a satisfactory solution has been obtained, and in indicating
difficulties in the minimization problem or in the ability of the procedure to cope with the problem.

The behaviour of the function, the estimated solution and first derivatives can help in deciding whether
a solution is acceptable and what to do in the event of a procedure returning with errorylevel > 0.

3.6 Function Evaluations at Infeasible Points

All the procedures for constrained problems will ensure that any evaluations of the objective function
occur at points which approzimately satisfy any simple bounds or linear constraints. Satisfaction of
such constraints is only approximate because procedures which estimate derivatives by finite differences
may require function evaluations at points which just violate such constraints even though the current
iteration just satisfies them.

No attempt is made to ensure that the current iteration satisfies any nonlinear constraints. In order to
prevent the objective function being evaluated outside some known region (where it may be undefined
or not practically computable), you may try to confine the iteration within this region by imposing
suitable simple bounds or linear constraints (but beware as this may create new local minima where
these constraints are active).

3.7 Related Problems

Module nag-1in_1sq (6.4) contains a procedure which solves the linear least-squares problem

m n
minimize Z ri(z)?, where r;(x) = b; — Z aijT;.
i=1 j=1

4 References

[1] Gill P E, Murray W and Wright M H (1981) Practical Optimization Academic Press

[NP3506/4] 9.0.7

