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Module 9.2: nag nlin lsq

Unconstrained Nonlinear Least-squares

nag nlin lsq contains a procedure for solving nonlinear least-squares problems and
another for estimating the associated variance–covariance matrix for such problems.
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Optimization Module Introduction

Introduction
This module contains three procedures and a derived type as follows.

• nag nlin lsq sol computes an unconstrained minimum of a sum of squares of m nonlinear
functions in n variables (where m ≥ n). You must provide a procedure that defines the nonlinear
functions. For maximum reliability, you should also provide all their first partial derivatives. If
you do not wish to provide any derivatives, an option is provided whereby this procedure will
approximate them using finite differences.

• nag nlin lsq cov estimates elements of the variance–covariance matrix C at the solution returned
by nag nlin lsq sol. This procedure can be used to find either the diagonal elements of C, or
the elements of the jth column of C, or the whole of C.

• nag nlin lsq cntrl init assigns default values to all the structure components of the derived
type nag nlin lsq cntrl wp.

• nag nlin lsq cntrl wp may be used to supply optional parameters to nag nlin lsq sol.
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Procedure: nag nlin lsq sol

1 Description

nag nlin lsq sol computes an unconstrained minimum of a sum of squares of m nonlinear functions in
n variables.

The procedure is applicable to problems of the form:

Minimize F (x) =
m∑

i=1

(fi(x))2

where x = (x1, x2, . . . , xn)T and m ≥ n. (The functions fi(x) are often referred to as ‘residuals’.)
You must supply a procedure to calculate the values of the fi(x) and, optionally, their first derivatives
∂fi/∂xj at any point x.

This procedure is intended for objective functions which have continuous first and second derivatives
(although it will usually work even if the derivatives have occasional discontinuities).

A description of the algorithm is given in the Mathematical Background section of this module document.

By default, the user-supplied procedure lsq fun is expected to return the appropriate values of the first
partial derivatives of the fi(x); if these are not available then the optional argument deriv (see Section
3.2) must be supplied as .false. (this procedure will then approximate them using finite differences).

If the function F represents the goodness of fit of a nonlinear model to observed data and you wish
to compute elements of the variance–covariance matrix of the estimated regression coefficients (i.e., by
calling nag nlin lsq cov after calling this procedure), then the optional arguments s and v (see Section
3.2) must be supplied in the call to this procedure.

2 Usage

USE nag nlin lsq

CALL nag nlin lsq sol(lsq fun, x, f sum sq, f vec [, optional arguments])

3 Arguments
Note. All array arguments are assumed-shape arrays. The extent in each dimension must be exactly that required by
the problem. Notation such as ‘x(n)’ is used in the argument descriptions to specify that the array x must have exactly n
elements.

This procedure derives the values of the following problem parameters from the shape of the supplied
arrays.

n ≥ 1 — the number of variables
m ≥ n — the number of nonlinear functions or residuals

3.1 Mandatory Arguments

lsq fun — subroutine
The procedure lsq fun, supplied by the user, must calculate the vector of values fi(x) and,
optionally, their first derivatives ∂fi/∂xj at any point x. (However, if you do not wish to calculate
the residuals at a particular x, there is the option of setting a parameter to cause this procedure
to terminate immediately.)

Its specification is:
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subroutine lsq fun(x, finish, f vec, f jac)

real(kind=wp), intent(in) :: x(:)
Shape: x has shape (n).
Input: the point x at which the values of fi and (optionally) ∂fi/∂xj are required, for
i = 1, 2, . . . ,m; j = 1, 2, . . . , n.

logical, intent(inout) :: finish

Input: finish will always be .false. on entry.
Output: if you wish to terminate the call to this procedure then finish should be set to
.true.. If finish is .true. on exit from lsq fun, then this procedure will terminate with
error%code = 202.

real(kind=wp), intent(out) :: f vec(:)
Shape: f vec has shape (m).
Output: unless finish is reset to .true., f vec(i) must contain the value of fi at the
point x, for i = 1, 2, . . . ,m.

real(kind=wp), intent(out), optional :: f jac(:, :)
Shape: f jac has shape (m,n).
Output: if present, f jac(i, j) must contain the value of the first derivative ∂fi/∂xj at the
point x, for i = 1, 2, . . . ,m; j = 1, 2, . . . , n.
Note: if no derivatives are supplied (i.e., the optional argument deriv (see Section 3.2) is
.false.), then f jac will not be supplied in any call to lsq fun; however, the definition of
lsq fun must still contain the argument f jac in its specification. (By default, lsq fun will
always be called with f jac present.)

Note: the subroutine lsq fun should be thoroughly tested before being supplied to this
procedure. The components verify and max iter of the optional argument control (i.e.,
control%verify and control%max iter) can be used to assist this process (see the type definition
for nag nlin lsq cntrl wp).

x(n) — real(kind=wp), intent(inout)
Input: an initial estimate of the solution.
Output: the point at which this procedure terminated. If error%level = 0, x contains x∗ (an
estimate of the solution).

f sum sq — real(kind=wp), intent(out)
Output: the value of F (x) at the final point given in x.

f vec(m) — real(kind=wp), intent(out)
Output: f vec(i) contains the value of the residual fi(x) at the final point given in x, for
i = 1, 2, . . . ,m.
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3.2 Optional Arguments

Note. Optional arguments must be supplied by keyword, not by position. The order in which they are described below
may differ from the order in which they occur in the argument list.

deriv — logical, intent(in), optional
Input: specifies whether or not first derivatives are provided in the user-supplied procedure
lsq fun.

If deriv = .true., then first derivatives are assumed to be provided in lsq fun via its
argument f jac;
if deriv = .false., then it is assumed that no first derivatives are provided.

Default: deriv = .true..

iter — integer, intent(out), optional
Output: the number of iterations which have been performed in this procedure.

f jac(m,n) — real(kind=wp), intent(out), optional
Output: f jac(i, j) contains the value of the first derivative ∂fi/∂xj at the final point given in
x, for i = 1, 2, . . . ,m; j = 1, 2, . . . , n. If deriv = .false., then f jac contains a finite difference
approximation to the first derivatives.

s(n) — real(kind=wp), intent(out), optional
Output: the singular values of the Jacobian matrix at the final point given in x. Thus s may be
useful as information about the structure of the problem.

v(n, n) — real(kind=wp), intent(out), optional
Output: the matrix V associated with the singular value decomposition

J = USV T

of the Jacobian matrix at the final point given in x, stored by rows. This matrix may be useful for
statistical purposes, since it is the matrix of orthonormalised eigenvectors of JTJ .

control — type(nag nlin lsq cntrl wp), intent(in), optional
Input: a structure containing scalar components; these are used to alter the default values of
those parameters which control the behaviour of the algorithm and level of printed output.
The initialization of this structure and its use is described in the procedure document for
nag nlin lsq cntrl init.

error — type(nag error), intent(inout), optional
The NAG fl90 error-handling argument. See the Essential Introduction, or the module document
nag error handling (1.2). You are recommended to omit this argument if you are unsure how to
use it. If this argument is supplied, it must be initialized by a call to nag set error before this
procedure is called.

4 Error Codes

Fatal errors (error%level = 3):

error%code Description

301 An input argument has an invalid value.

302 An array argument has an invalid shape.

303 Array arguments have inconsistent shapes.

320 The procedure was unable to allocate enough memory.
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Failures (error%level = 2):

error%code Description

201 The user-supplied Jacobian matrix appears to be incorrect.

As a first step, you should check that the code which defines the elements of the
Jacobian matrix is correct, for example by computing them at a point where the
correct values are known. However, care should be taken that the chosen point fully
tests the evaluation of the whole matrix. It is remarkable how often the values x = 0
or x = 1 are used to test evaluation procedures, and how often the special properties
of these numbers make the test meaningless.

202 User requested termination.

This exit occurs if you have set finish to .true. in lsq fun.

203 (This failure is not likely to occur.) The method for computing the singular value
decomposition of the Jacobian matrix has failed to converge in a reasonable number
of sub-iterations.

It may be worth applying this procedure again starting with an initial approximation
which is not too close to the point at which the failure occurred.

Warnings (error%level = 1):

error%code Description

101 The limiting number of iterations (determined by the component max iter of the
optional argument control (i.e., control%max iter)) has been reached.

If steady reductions in the sum of squares, F (x), were monitored up to the point
where this exit occurred then control%max iter was set too small, so the calculations
should be restarted from the final point held in x.

This exit may also indicate that F (x) has no minimum.

102 The conditions for a minimum have not all been satisfied, but a lower point could
not be found.

This could be because the component optim tol of the optional argument control
(i.e., control%optim tol) has been set so small that rounding errors in the evaluation
of the residuals make attainment of the convergence conditions impossible.

The values 203, 101 and 102 may also be caused by mistakes in lsq fun, by the formulation of the
problem or by an awkward function. If there are no such mistakes, it is worth restarting the calculations
from a different starting point (not the point at which the failure occurred) in order to avoid the region
which caused the failure.

5 Examples of Usage

A complete example of the use of this procedure appears in Example 1 of this module document. This
example could be modified to use some (or all) of the optional arguments described in Section 3.2.

6 Further Comments

6.1 Termination Criteria

A successful exit (error%level = 0) is made from this procedure when (B1, B2 and B3) or B4 or B5
hold, where

B1 ≡ α(k) × ‖p(k)‖ < (optim tol+ EPSILON(1.0 wp))×
(
1.0 + ‖x(k)‖

)
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B2 ≡ |F (k) − F (k−1)| < (optim tol+ EPSILON(1.0 wp))2 ×
(
1.0 + F (k)

)
B3 ≡ ‖g(k)‖ < (EPSILON(1.0 wp))1/3 ×

(
1.0 + F (k)

)
B4 ≡ F (k) < (EPSILON(1.0 wp))2

B5 ≡ ‖g(k)‖ <
(
EPSILON(1.0 wp)×

√
F (k)

)1/2

and where F (k) and g(k) are the values of F (x) and its vector of first derivatives at x(k), while the norm
‖.‖ and the component optim tol of the optional argument control (i.e., control%optim tol) are as
defined in the type definition for nag nlin lsq cntrl wp.

If error%level= 0 then the vector in x on exit, xsol, is almost certainly an estimate of xtrue, the position
of the minimum to the accuracy specified by control%optim tol.

If error%code = 102, then xsol may still be a good estimate of xtrue, but to verify this you should make
the following checks. If

(a) the sequence
{
F
(
x(k)

)}
converges to F (xsol) at a superlinear or a fast linear rate, and

(b) g(xsol)T g(xsol) < 10× EPSILON(1.0 wp),

then it is almost certain that xsol is a close approximation to the minimum. When (b) is true, then
usually F (xsol) is a close approximation to F (xtrue).

Further suggestions about confirmation of a computed solution are given in the Chapter Introduction.

6.2 Scaling

Ideally, the problem should be scaled so that, at the solution, F (x) and the corresponding values of
the xj are each in the range (−1,+1), and so that at points one unit away from the solution, F (x)
differs from its value at the solution by approximately one unit. This will usually imply that the Hessian
matrix of F (x) at the solution is well conditioned. It is unlikely that you will be able to follow these
recommendations very closely, but it is worth trying as sensible scaling will reduce the difficulty of the
minimization problem.

6.3 Accuracy

If the problem is reasonably well scaled and a successful exit is made, then, for a computer with a
mantissa of t decimals, one would expect to get about t/2 − 1 decimals accuracy in the components of
x and between t − 1 (if F (x) is of order 1 at the minimum) and 2t − 2 (if F (x) is close to zero at the
minimum) decimals accuracy in F (x).

7 Description of Printed Output

This section describes the intermediate and final printout produced by this procedure. The level of
printed output can be controlled via the components list and print level of the optional argument
control (i.e., control%list and control%print level). For example, a listing of the parameter
settings to be used by this procedure is output unless control%list is set to .false.. Note also that
the intermediate printout and the final printout (in full) are produced only if control%print level ≥
10 (the default).

The intermediate printout produced by this procedure is as follows.

When control%print level ≥ 5, the following line of output is produced at every iteration.

Itn the current iteration number (k say).
Step the step α(k) taken along the computed search direction p(k).
Nfun the cumulative number of calls to lsq fun.
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Objective the current value of the objective function, F (x(k)).
Norm g the Euclidean norm of the gradient of F (x(k)).
Grade the grade of the Jacobian matrix, i.e., the dimension of the sub-space for which the

Jacobian matrix can be used as a valid approximation to the curvature (see Gill
and Murray [2]).

When control%print level ≥ 20, the following output is produced at every iteration.

x the current point x(k).
g the current gradient of F (x(k)).
Singular values the singular values of the current approximation to the Jacobian matrix.

The final printout produced by this procedure is as follows.

When control%print level = 1 or control%print level ≥ 10, the following output is produced at
the final iteration.

x the final point x∗.
g the gradient of F (x∗).
Singular values the singular values of the Jacobian matrix at the final point x∗.

When control%print level > 0, details of the total number of iterations performed along with the
final values of the objective function, the Euclidean norm of the gradient and the Euclidean norm of the
residuals are also output.

Numerical values are output with a fixed number of digits: they are not guaranteed to be accurate to
this precision.
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Procedure: nag nlin lsq cov

1 Description

nag nlin lsq cov returns estimates of elements of the (symmetric) variance–covariance matrix C of the
estimated regression coefficients for a nonlinear least-squares problem. The estimates are derived from
the Jacobian of the functions fi(x) at the solution returned by nag nlin lsq sol. (The functions fi(x)
are often referred to as ‘residuals’.)

This procedure is intended for use when the nonlinear least-squares function, F (x) =
m∑

i=1

(fi(x))2,

represents the goodness of fit of a nonlinear model to observed data. It assumes that the Hessian of
F (x) at the solution can be adequately approximated by 2JTJ , where J is the Jacobian matrix whose
(i, j)th element is ∂fi/∂xj .

This procedure can be used to find either the diagonal elements of C, or the elements of the jth column
of C, or the whole of C.

A description of the algorithm is given in the Mathematical Background section of this module document.

2 Usage

USE nag nlin lsq

CALL nag nlin lsq cov(f vec, s, v [, optional arguments])

3 Arguments
Note. All array arguments are assumed-shape arrays. The extent in each dimension must be exactly that required by
the problem. Notation such as ‘x(n)’ is used in the argument descriptions to specify that the array x must have exactly n
elements.

This procedure derives the values of the following problem parameters from the shape of the supplied
arrays.

n ≥ 1 — the number of singular values
m ≥ n — the number of nonlinear functions or residuals

3.1 Mandatory Arguments

f vec(m) — real(kind=wp), intent(in)
Input: the values of the residuals f1(x), . . . , fm(x), as returned by nag nlin lsq sol.

s(n) — real(kind=wp), intent(in)
Input: the singular values of the Jacobian matrix J , as returned by nag nlin lsq sol.

v(n, n) — real(kind=wp), intent(inout)
Input: the right singular vectors of J , as returned by nag nlin lsq sol.
Output: overwritten by C if the optional arguments j and cj (see Section 3.2) are not present or
if j is present and j = −1. Otherwise, v is unchanged.
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3.2 Optional Arguments

Note. Optional arguments must be supplied by keyword, not by position. The order in which they are described below
may differ from the order in which they occur in the argument list.

j — integer, intent(in), optional
Input: if j = −1, the whole of C is required. If j = 0, the diagonal elements of C are required. If
j > 0, the elements of the jth column of C are required.
Constraints: −1 ≤ j ≤ n and cj must be present if j is present and j ≥ 0.
Default: if cj is not present then j = −1, and 0 otherwise.

cj(n) — real(kind=wp), intent(out), optional
Output: if j is present and j = −1, cj is not used. If j is present and j = 0 or j is not present,
cj(i) contains the value of cii. If j is present and j > 0, cj(i) contains the value of cij .

rank — integer, intent(out), optional
Output: r, the assumed rank of the Jacobian matrix J . The value of r is computed by regarding
singular values s(i) that are not larger than 10 × EPSILON(1.0 wp)× s(1) as zero.

error — type(nag error), intent(inout), optional
The NAG fl90 error-handling argument. See the Essential Introduction, or the module document
nag error handling (1.2). You are recommended to omit this argument if you are unsure how to
use it. If this argument is supplied, it must be initialized by a call to nag set error before this
procedure is called.

4 Error Codes

Fatal errors (error%level = 3):

error%code Description

301 An input argument has an invalid value.

302 An array argument has an invalid shape.

303 Array arguments have inconsistent shapes.

305 Invalid absence of an optional argument.

320 The procedure was unable to allocate enough memory.

Failures (error%level = 2):

error%code Description

201 The singular values are all zero, so that at the solution the Jacobian matrix J has
rank 0.

Warnings (error%level = 1):

error%code Description

101 At the solution the Jacobian matrix J contains linear (or near linear) dependencies
amongst its columns.

In this case the required elements of C have still been computed based upon J having
an assumed rank equal to rank (see Section 3.2).
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5 Examples of Usage

A complete example of the use of this procedure appears in Example 2 of this module document. This
example could be modified to use some (or all) of the optional arguments described in Section 3.2.

6 Further Comments

The computed elements of C will be the exact covariances corresponding to a closely neighbouring
Jacobian matrix J .

6.1 Algorithmic Detail

If overflow occurs then either an element of C is very large, or the singular values and/or right singular
vectors have been supplied incorrectly.

6.2 Timing

The time taken by the procedure is approximately proportional to n3 when the whole of C is required,
and approximately proportional to n2 otherwise.
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Procedure: nag nlin lsq cntrl init

1 Description

nag nlin lsq cntrl init assigns default values to all the structure components of the derived type
nag nlin lsq cntrl wp.

2 Usage

USE nag nlin lsq

CALL nag nlin lsq cntrl init(control)

3 Arguments

3.1 Mandatory Argument

control — type(nag nlin lsq cntrl wp), intent(out)
Output: a structure containing the default values of those parameters which control the behaviour
of the algorithm and level of printed output. A description of its components is given in the
document for the derived type nag nlin lsq cntrl wp.

4 Error Codes

None.

5 Examples of Usage

A complete example of the use of this procedure appears in Example 2 of this module document.
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Derived Type: nag nlin lsq cntrl wp

Note. The names of derived types containing real/complex components are precision dependent. For double precision
the name of this type is nag nlin lsq cntrl dp. For single precision the name is nag nlin lsq cntrl sp. Please read the
Users’ Note for your implementation to check which precisions are available.

1 Description

A structure of type nag nlin lsq cntrl wp is used to supply a number of optional parameters: these
govern the level of printed output and a number of tolerances and limits, which allow you to influence the
behaviour of the algorithm. If this structure is supplied then it must be initialized prior to use by calling
the procedure nag nlin lsq cntrl init, which assigns default values to all the structure components.
You may then assign required values to selected components of the structure (as appropriate).

2 Type Definition

The public components are listed below; components are grouped according to their function. A full
description of the purpose of each component is given in Section 3.

type nag nlin lsq cntrl wp
! Printing parameters
logical :: list
integer :: unit
integer :: print level
!
! Algorithm choice and tolerances
logical :: lin deriv
real(kind=wp) :: linesearch tol
real(kind=wp) :: step max
real(kind=wp) :: optim tol
integer :: max iter
logical :: verify

end type nag nlin lsq cntrl wp

3 Components

3.1 Printing Parameters

list — logical
Controls the printing of the parameter settings in the call to nag nlin lsq sol as follows.

If list = .true., then the parameter settings are printed;
if list = .false., then the parameter settings are not printed.

Default: list = .true..

unit — integer
Specifies the Fortran unit number to which all output produced by nag nlin lsq sol is sent.

Default: unit = the default Fortran unit number for your implementation.
Constraints: a valid output unit.

print level — integer
Controls the amount of output produced by nag nlin lsq sol, as indicated below. A
detailed description of the printed output is given in Section 7 of the procedure document for
nag nlin lsq sol.
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The following output is sent to the Fortran unit number defined by unit:

≤ 0 No output.
1 The final solution only.

≥ 5 One line of output for each iteration (no printout of the final solution).
≥ 10 The final solution and one line of output for each iteration.
≥ 20 The final solution and one line of output for each iteration in addition to the variables,

the gradient and the singular values of the Jacobian matrix at each iteration.

Default: print level = 10.

3.2 Algorithm Choice and Tolerances

lin deriv — logical
Note: lin deriv is ignored if the optional argument deriv (see Section 3.2 of the procedure
document for nag nlin lsq sol) has been supplied and set to .false..
lin deriv specifies whether the linear minimizations (i.e., minimizations of F (x(k) + α(k)p(k)) with
respect to α(k)) are to be performed by a procedure which only requires the evaluation of the fi(x)
(lin deriv = .false.), or by a procedure which also requires the first derivatives of the fi(x)
(lin deriv = .true.).

It will often be possible to evaluate the first derivatives of the residuals in about the same amount
of computer time that is required for the evaluation of the residuals themselves; if this is so
then nag nlin lsq sol should be used with lin deriv = .true. (the default). However, if the
evaluation of the derivatives takes more than about 4 times as long as the evaluation of the residuals,
then a setting of lin deriv = .false. will usually be preferable (although the default setting is
slightly more robust).

Default: lin deriv = .true..

linesearch tol — real(kind=wp)
linesearch tol specifies how accurately the linear minimizations are to be performed.

Every iteration of nag nlin lsq sol involves the minimization of F (x(k) + α(k)p(k)) with respect
to α(k). The minimum with respect to α(k) will be located more accurately for small values of
linesearch tol (say 0.01) than for large values (say 0.9).

Although accurate linear minimizations will generally reduce the number of iterations performed
by nag nlin lsq sol, they will increase the number of calls made to lsq fun on each iteration.
On balance it is usually more efficient to perform a low-accuracy minimization.

Default: if the optional argument deriv (see Section 3.2 of the procedure document for
nag nlin lsq sol) has been supplied and set to .false. or lin deriv is set to .false., then the
default value of linesearch tol is 0.5 for a multivariate problem and 0.0 for a univariate problem.
If deriv and lin deriv are both .true. (the default), then the default value of linesearch tol
is 0.9 for a multivariate problem and 0.0 univariate problem.
Constraints: 0.0 ≤ linesearch tol < 1.0.

step max — real(kind=wp)
step max specifies an estimate of the Euclidean distance between the solution and the starting
point. (For maximum efficiency, a slight overestimate is preferable.)

nag nlin lsq sol will ensure that, for each iteration,

n∑
j=1

(x(k)
j − x

(k−1)
j )2 ≤ (step max)2

where k is the iteration number. Thus, if the problem has more than one solution, nag nlin lsq sol
is most likely to find the one nearest to the starting point. On difficult problems, a realistic choice
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can prevent the sequence of x(k) entering a region where the problem is ill behaved and can help
avoid overflow in the evaluation of F (x). However, an underestimate of step max can lead to
inefficiency.

Default: step max = 100000.0.
Constraints: step max ≥ optim tol.

optim tol — real(kind=wp)
optim tol specifies the accuracy in x to which the solution is required. If xtrue is the true value of
x at the minimum, then xsol, the estimated position prior to a normal exit, is such that

‖xsol − xtrue‖ < optim tol× (1.0 + ‖xtrue‖),

where ‖y‖ =

√√√√ n∑
j=1

y2
j .

For example, if the elements of xsol are not much larger than 1.0 in modulus and if optim tol
= 0.00001, then xsol is usually accurate to about 5 decimal places. (For further details see the
Mathematical Background section of this module document.) If F (x) and the variables are scaled
roughly as described in Section 6 of the procedure document for nag nlin lsq sol, then the default
setting will usually be appropriate.

Default: optim tol = SQRT(EPSILON(1.0 wp)).
Constraints: 10×EPSILON(1.0 wp) ≤ optim tol < 1.0.

max iter — integer
max iter specifies the maximum number of iterations allowed before termination.

If you wish to check that a call to nag nlin lsq sol is correct before attempting to solve the
problem in full then max itermay be set to 0. No iterations will be performed but the initialization
stages prior to the first iteration will be processed and a listing of parameter settings output if list
= .true. (the default). Any derivative checking (as specified by verify) will also be performed.

Default: max iter = max(50, 5 × number of variables).
Constraints: max iter ≥ 0.

verify — logical
Note: verify is ignored if the optional argument deriv (see Section 3.2 of the procedure document
for nag nlin lsq sol) has been supplied and set to .false..
Input: if verify = .true., then a check of the derivatives defined by lsq fun will be made at the
starting point x.

A starting point of x = 0 or x = 1 should be avoided if this test is to be meaningful, but if either of
these starting points is necessary then nag nlin lsq sol should initially be called at an alternative
point but with max iter set to zero. If this test is successfully passed then the optimization process
can be restarted from the original starting point with max iter reset to a value > 0 and verify
set to .false..
Default: verify = .true..
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Example 1: Minimization with derivatives

To find least-squares estimates of x1, x2 and x3 in the model

y = x1 +
t1

x2t2 + x3t3

using the 15 sets of data given in the following table.

y 0.14 0.18 0.22 0.25 0.29 0.32 0.35 0.39 0.37 0.58 0.73 0.96 1.34 2.10 4.39
t1 1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 9.0 10.0 11.0 12.0 13.0 14.0 15.0
t2 15.0 14.0 13.0 12.0 11.0 10.0 9.0 8.0 7.0 6.0 5.0 4.0 3.0 2.0 1.0
t3 1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 7.0 6.0 5.0 4.0 3.0 2.0 1.0

The initial point is x(0) = (0.5, 1.0, 1.5)T .

The optimal solution (to five figures) is x∗ = (0.0082410, 1.13304, 2.3437)T .

The data sets for y and t are stored in the arrays y and t which are declared in the module
nlin lsq ex01 mod to allow communication between the main program and the procedure lsq fun.
The data is read into the arrays in the main program but accessed from lsq fun, the procedure being
defined in the module. Note that a USE statement for the user-defined module must be included in the
main program.

1 Program Text
Note. The listing of the example program presented below is double precision. Single precision users are referred to
Section 5.2 of the Essential Introduction for further information.

MODULE nlin_lsq_ex01_mod

! .. Implicit None Statement ..

IMPLICIT NONE

! .. Intrinsic Functions ..

INTRINSIC KIND

! .. Parameters ..

INTEGER, PARAMETER :: wp = KIND(1.0D0)

! .. Local Arrays ..

REAL (wp), ALLOCATABLE :: t(:,:), y(:)

CONTAINS

SUBROUTINE lsq_fun(x,finish,f_vec,f_jac)

! Procedure to evaluate the residuals and optionally their 1st

! derivatives. The procedure may also be used when the

! linesearch to be used does not require derivatives (see

! the optional argument control), since it can deal with the

! presence or absence of f_jac.

! .. Implicit None Statement ..

IMPLICIT NONE

! .. Intrinsic Functions ..

INTRINSIC PRESENT, SIZE

! .. Scalar Arguments ..

LOGICAL, INTENT (INOUT) :: finish

! .. Array Arguments ..

REAL (wp), OPTIONAL, INTENT (OUT) :: f_jac(:,:)

REAL (wp), INTENT (OUT) :: f_vec(:)

REAL (wp), INTENT (IN) :: x(:)

! .. Local Scalars ..

INTEGER :: i

REAL (wp) :: denom, dummy
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! .. Executable Statements ..

IF (PRESENT(f_jac)) THEN

DO i = 1, SIZE(f_vec)

denom = x(2)*t(i,2) + x(3)*t(i,3)

f_vec(i) = x(1) + t(i,1)/denom - y(i)

f_jac(i,1) = 1.0_wp

dummy = -1.0_wp/(denom*denom)

f_jac(i,2) = t(i,1)*t(i,2)*dummy

f_jac(i,3) = t(i,1)*t(i,3)*dummy

END DO

ELSE

DO i = 1, SIZE(f_vec)

denom = x(2)*t(i,2) + x(3)*t(i,3)

f_vec(i) = x(1) + t(i,1)/denom - y(i)

END DO

END IF

END SUBROUTINE lsq_fun

END MODULE nlin_lsq_ex01_mod

PROGRAM nag_nlin_lsq_ex01

! Example Program Text for nag_nlin_lsq

! NAG fl90, Release 3. NAG Copyright 1997.

! .. Use Statements ..

USE nag_examples_io, ONLY : nag_std_in, nag_std_out

USE nag_nlin_lsq, ONLY : nag_nlin_lsq_sol

USE nlin_lsq_ex01_mod, ONLY : lsq_fun, t, y, wp

! .. Implicit None Statement ..

IMPLICIT NONE

! .. Local Scalars ..

INTEGER :: i, m, n, r

REAL (wp) :: f_sum_sq

! .. Local Arrays ..

REAL (wp), ALLOCATABLE :: f_vec(:), x(:)

! .. Executable Statements ..

WRITE (nag_std_out,*) ’Example Program Results for nag_nlin_lsq_ex01’

READ (nag_std_in,*) ! Skip heading in data file

! Read number of observations (m), variables (n) and controls (r)

READ (nag_std_in,*) m, n, r

ALLOCATE (f_vec(m),x(n),t(m,r),y(m)) ! Allocate storage

! Read in data for y and corresponding controls t(1,2,...,r)

READ (nag_std_in,*) (y(i),t(i,:),i=1,m)

! Read the starting point x

READ (nag_std_in,*) x

! Solve the problem

CALL nag_nlin_lsq_sol(lsq_fun,x,f_sum_sq,f_vec)

DEALLOCATE (f_vec,x,t,y) ! Deallocate storage

END PROGRAM nag_nlin_lsq_ex01
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2 Program Data
Example Program Data for nag_nlin_lsq_ex01

15 3 3 :Values of m, n, r

0.14 1.00 15.00 1.00

0.18 2.00 14.00 2.00

0.22 3.00 13.00 3.00

0.25 4.00 12.00 4.00

0.29 5.00 11.00 5.00

0.32 6.00 10.00 6.00

0.35 7.00 9.00 7.00

0.39 8.00 8.00 8.00

0.37 9.00 7.00 7.00

0.58 10.00 6.00 6.00

0.73 11.00 5.00 5.00

0.96 12.00 4.00 4.00

1.34 13.00 3.00 3.00

2.10 14.00 2.00 2.00

4.39 15.00 1.00 1.00 :End of (y(i), (t(i,j), j=1,r), i=1,m)

0.50 1.00 1.50 :End of x

3 Program Results
Example Program Results for nag_nlin_lsq_ex01

Parameters

----------

number of residuals (m) 15 number of variables (n) 3

list................... .true. print_level............ 10

lin_deriv.............. .true. linesearch_tol......... 9.00E-01

step_max............... 1.00E+05 optim_tol.............. 1.49E-08

deriv.................. .true. verify................. .true.

max_iter............... 50 unit................... 6

Verification of the Jacobian matrix

-----------------------------------

The Jacobian matrix seems to be ok.

Intermediate Results

--------------------

Itn Step Nfun Objective Norm g Grade

0 1 1.021037E+01 3.2E+01 3

1 1.0E+00 2 1.987296E-01 2.8E+00 3

2 1.0E+00 3 9.232381E-03 1.9E-01 3

3 1.0E+00 4 8.214916E-03 1.2E-03 3

4 1.0E+00 5 8.214877E-03 5.0E-08 2

5 1.0E+00 6 8.214877E-03 4.7E-09 0

6 1.0E+00 7 8.214877E-03 1.2E-09 0

Final Result

------------

x g Singular values

8.24106E-02 1.2E-09 4.1E+00

1.13304E+00 -1.9E-11 1.6E+00

2.34370E+00 1.8E-11 6.1E-02
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exit from nag_nlin_lsq after 6 iterations.

final objective value = 0.8214877E-02

final residual norm = 9.1E-02

final gradient norm = 1.2E-09
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Example 2: Estimation of the variance–covariance matrix C

To estimate the variance–covariance matrix C for the least-squares estimates of x1, x2 and x3 in the
model

y = x1 +
t1

x2t2 + x3t3

using the data given in Example 1. The least-squares solution is computed using the procedure
nag nlin lsq sol.

1 Program Text
Note. The listing of the example program presented below is double precision. Single precision users are referred to
Section 5.2 of the Essential Introduction for further information.

MODULE nlin_lsq_ex02_mod

! .. Implicit None Statement ..

IMPLICIT NONE

! .. Intrinsic Functions ..

INTRINSIC KIND

! .. Parameters ..

INTEGER, PARAMETER :: wp = KIND(1.0D0)

! .. Local Arrays ..

REAL (wp), ALLOCATABLE :: t(:,:), y(:)

CONTAINS

SUBROUTINE lsq_fun(x,finish,f_vec,f_jac)

! Procedure to evaluate the residuals and optionally their 1st

! derivatives. The procedure may also be used when the

! linesearch to be used does not require derivatives

! (see the optional argument control), since it can deal

! with the presence or absence of f_jac.

! .. Implicit None Statement ..

IMPLICIT NONE

! .. Intrinsic Functions ..

INTRINSIC PRESENT, SIZE

! .. Scalar Arguments ..

LOGICAL, INTENT (INOUT) :: finish

! .. Array Arguments ..

REAL (wp), OPTIONAL, INTENT (OUT) :: f_jac(:,:)

REAL (wp), INTENT (OUT) :: f_vec(:)

REAL (wp), INTENT (IN) :: x(:)

! .. Local Scalars ..

INTEGER :: i

REAL (wp) :: denom, dummy

! .. Executable Statements ..

IF (PRESENT(f_jac)) THEN

DO i = 1, SIZE(f_vec)

denom = x(2)*t(i,2) + x(3)*t(i,3)

f_vec(i) = x(1) + t(i,1)/denom - y(i)

f_jac(i,1) = 1.0_wp

dummy = -1.0_wp/(denom*denom)

f_jac(i,2) = t(i,1)*t(i,2)*dummy

f_jac(i,3) = t(i,1)*t(i,3)*dummy

END DO

ELSE

DO i = 1, SIZE(f_vec)
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denom = x(2)*t(i,2) + x(3)*t(i,3)

f_vec(i) = x(1) + t(i,1)/denom - y(i)

END DO

END IF

END SUBROUTINE lsq_fun

END MODULE nlin_lsq_ex02_mod

PROGRAM nag_nlin_lsq_ex02

! Example Program Text for nag_nlin_lsq

! NAG fl90, Release 3. NAG Copyright 1997.

! .. Use Statements ..

USE nag_examples_io, ONLY : nag_std_in, nag_std_out

USE nag_nlin_lsq, ONLY : nag_nlin_lsq_sol, nag_nlin_lsq_cov, &

nag_nlin_lsq_cntrl_init, nag_nlin_lsq_cntrl_wp => nag_nlin_lsq_cntrl_dp

USE nag_write_mat, ONLY : nag_write_gen_mat

USE nlin_lsq_ex02_mod, ONLY : lsq_fun, t, y, wp

! .. Implicit None Statement ..

IMPLICIT NONE

! .. Local Scalars ..

INTEGER :: i, m, n, r

REAL (wp) :: f_sum_sq

TYPE (nag_nlin_lsq_cntrl_wp) :: control

! .. Local Arrays ..

REAL (wp), ALLOCATABLE :: f_vec(:), s(:), v(:,:), x(:)

! .. Executable Statements ..

WRITE (nag_std_out,*) ’Example Program Results for nag_nlin_lsq_ex02’

READ (nag_std_in,*) ! Skip heading in data file

! Read number of observations (m), variables (n) and controls (r)

READ (nag_std_in,*) m, n, r

ALLOCATE (f_vec(m),x(n),t(m,r),y(m),s(n),v(n,n)) ! Allocate storage

! Read in data for y and corresponding controls t(1,2,...,r)

READ (nag_std_in,*) (y(i),t(i,:),i=1,m)

! Read the starting point x

READ (nag_std_in,*) x

! initialize control structure and set required control parameters

CALL nag_nlin_lsq_cntrl_init(control)

control%print_level = 1

! Solve the problem

CALL nag_nlin_lsq_sol(lsq_fun,x,f_sum_sq,f_vec,s=s,v=v,control=control)

! Compute the estimated variance-covariance matrix C

CALL nag_nlin_lsq_cov(f_vec,s,v)

WRITE (nag_std_out,*)

CALL nag_write_gen_mat(v,title=’variance-covariance matrix C’)

DEALLOCATE (f_vec,s,t,v,x,y) ! Deallocate storage
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END PROGRAM nag_nlin_lsq_ex02

2 Program Data
Example Program Data for nag_nlin_lsq_ex02

15 3 3 :Values of m, n, r

0.14 1.00 15.00 1.00

0.18 2.00 14.00 2.00

0.22 3.00 13.00 3.00

0.25 4.00 12.00 4.00

0.29 5.00 11.00 5.00

0.32 6.00 10.00 6.00

0.35 7.00 9.00 7.00

0.39 8.00 8.00 8.00

0.37 9.00 7.00 7.00

0.58 10.00 6.00 6.00

0.73 11.00 5.00 5.00

0.96 12.00 4.00 4.00

1.34 13.00 3.00 3.00

2.10 14.00 2.00 2.00

4.39 15.00 1.00 1.00 :End of (y(i), (t(i,j), j=1,r), i=1,m)

0.50 1.00 1.50 :End of x

3 Program Results
Example Program Results for nag_nlin_lsq_ex02

Parameters

----------

number of residuals (m) 15 number of variables (n) 3

list................... .true. print_level............ 1

lin_deriv.............. .true. linesearch_tol......... 9.00E-01

step_max............... 1.00E+05 optim_tol.............. 1.49E-08

deriv.................. .true. verify................. .true.

max_iter............... 50 unit................... 6

Verification of the Jacobian matrix

-----------------------------------

The Jacobian matrix seems to be ok.

Final Result

------------

x g Singular values

8.24106E-02 1.2E-09 4.1E+00

1.13304E+00 -1.9E-11 1.6E+00

2.34370E+00 1.8E-11 6.1E-02

exit from nag_nlin_lsq after 6 iterations.

final objective value = 0.8214877E-02

final residual norm = 9.1E-02

final gradient norm = 1.2E-09
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variance-covariance matrix C

1.5312E-04 2.8698E-03 -2.6565E-03

2.8698E-03 9.4802E-02 -9.0983E-02

-2.6565E-03 -9.0983E-02 8.7781E-02
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Additional Examples
Not all example programs supplied with NAG fl90 appear in full in this module document. The following
additional examples, associated with this module, are available.

nag nlin lsq ex03

Minimization without derivatives.

nag nlin lsq ex04

Estimation of the diagonal elements of the variance–covariance matrix C.
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Mathematical Background

1 Description

nag nlin lsq sol minimizes a sum of squares of m nonlinear functions each with n variables, that is
problems of the form:

Minimize F (x) =
m∑

i=1

(fi(x))2 (1)

where x = (x1, x2, . . . , xn)T and m ≥ n.

From a user-supplied starting point x(0), nag nlin lsq sol generates a sequence of points x(1), x(2), . . .,
which is intended to converge to a local minimum of F (x). The sequence of points is given by

x(k+1) = x(k) + α(k)p(k)

where the vector p(k) is a direction of search, and α(k) is chosen such that F (x(k) + α(k)p(k)) is
approximately a minimum with respect to α(k).

The vector p(k) used depends upon the reduction in the sum of squares obtained during the last iteration.
If the sum of squares was sufficiently reduced, then p(k) is the Gauss–Newton direction; otherwise the
second derivatives of the fi(x) are taken into account using a quasi-Newton updating scheme.

The method is designed to ensure that steady progress is made whatever the starting point, and to have
the rapid ultimate convergence of Newton’s method.

The number of iterations required depends on the number of variables, the number of residuals, the
behaviour of F (x), the accuracy demanded and the distance of the starting point from the solution.
The number of multiplications performed per iteration of nag nlin lsq sol varies, but for m 	 n is
approximately nm2 + O(n3). In addition, each iteration makes at least one call of lsq fun. So, unless
the residuals can be evaluated very quickly, the run time will be dominated by the time spent in lsq fun.

When the sum of squares represents the goodness of fit of a nonlinear model to observed data, elements
of the variance–covariance matrix of the estimated regression coefficients can subsequently be computed
by calling nag nlin lsq cov (using information returned by the procedure nag nlin lsq sol in the
mandatory argument f vec and the optional arguments s and v).

From (1), the Hessian matrix G(x) = ∇2F (x) is of the form

G(x) = 2

(
J(x)TJ(x) +

m∑
i=1

fi(x)Gi(x)

)
,

where J(x) is the Jacobian matrix of f(x), andGi(x) is the Hessian matrix of fi(x). In the neighbourhood
of a solution, ‖f(x)‖ is often small compared to ‖J(x)TJ(x)‖. For example, when f(x) represents the
goodness of fit of a nonlinear model to observed data. nag nlin lsq cov is intended for use in such
situations. It assumes that 2J(x)TJ(x) is an adequate approximation to G(x), thereby avoiding the
need to compute or approximate second derivatives of {fi(x)}. For further information see Section 4.7
of Gill et al. [3].

The estimated variance–covariance matrix C is then given by

C = σ2(JTJ)−1 when JTJ is non-singular,

where σ2 is the estimated variance of the residual at the computed solution x̂, given by

σ2 =
F (x̂)
m− n

if m > n, and 0 if m = n.

The diagonal (off-diagonal) elements of C are estimates of the variances (covariances) of the estimated
regression coefficients. See Bard [1] and Wolberg [4] for further information on the use of C.
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When JTJ is singular then C is taken to be

C = σ2(JTJ)†,

where (JTJ)† is the pseudo-inverse of JTJ , and

σ2 =
F (x̂)
m− r

, r = rank(J)

but in this case error%level = 1 on exit to warn you that J has linear dependencies in its columns.
The assumed rank of J can be obtained directly from the optional argument rank (see Section 3.2 of
the procedure document for nag nlin lsq cov).

Suppose that Ĝ = 2JTJ is an adequate approximation to G at x̂ and let H = Ĝ−1. If x∗ is the true
solution, then the 100(1− β)% confidence interval on x̂ is

x̂i −
√
cii.t(1−β/2,m−n) < x∗i < x̂i +

√
cii.t(1−β/2,m−n), i = 1, 2, . . . , n

where t(1−β/2,m−n) is the 100(1 − β)/2 percentage point of the t-distribution with m − n degrees of
freedom.

In the majority of problems, the residuals fi, for i = 1, 2, . . . ,m, contain the difference between the
values of a model function φ(z, x) calculated for m different values of the independent variable z, and
the corresponding observed values at these points. The minimization process determines the parameters,
or constants x, of the fitted function φ(z, x). For any value, z0, of the independent variable z, an unbiased
estimate of the variance of φ is

var φ =
2F (x̂)
m− n

n∑
i=1

n∑
k=1

[
∂φ

∂xi

]
z0

[
∂φ

∂xk

]
z0

hik.

The 100(1− β)% confidence interval on F at the point z0 is

φ(z0, x̂)−
√
var φ.t(β/2,m−n) < φ(z0, x∗) < φ(z0, x̂) +

√
var φ.t(β/2,m−n).

For further details on the analysis of least-squares solutions see Bard [1] and Wolberg [4].
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