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Module 28.1: nag fac analysis

Factor Analysis and Principal Component

nag fac analysis contains a procedure that performs principal component analysis for
multivariate data.
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Multivariate Analysis Module Introduction

Introduction

Let the n by p data matrix consist of p variables, x1, x2, . . . , xp, observed on n objects or individuals.
Factor analysis and principal component analysis are variable-directed methods that examine the linear
relationship between all the variables with the aim of reducing the dimensionality of the problem.

Principal component analysis finds new variables which are linear combinations of the observed variables,
are orthogonal and have the maximum variation in the smallest number of variables. The principal
components can be shown to be the eigenvectors of the variance-covariance matrix and the eigenvalues
give the amount of variation for each component. The first principal component is the eigenvector
associated with the largest eigenvalue and so explains the largest amount of variation. Ideally, a small
number of principal components will explain most of the variation in the original data. Examining the
eigenvalues will give an indication of how many components are needed to give a reasonable representation
of the data.

Instead of using the variance-covariance matrix a standardised version such as the correlation matrix
can be used. An alternate method of computing the principal components is to use the singular value
decomposition of the scaled mean adjusted data matrix. The squared singular values are the eigenvalues
given above, the right singular vectors give the loading matrix, which shows how the original variables
relate to the principal components, and the left singular vectors give the principal component scores
which give the observations in term of the principal components.

Factor analysis can be performed by dividing the variables in a principal component analysis by a suitable
scaling factor. In the simplest case the scaling can be fixed as the inverse of the diagonal elements of the
inverse of the variance-covariance matrix to give principal factor analysis.

Only one procedure is available at this release.

• nag prin comp performs a principal component analysis on a data matrix. Principal component
analysis is often used to reduce the dimension of a data set, replacing a large number of correlated
variables with a smaller number of orthogonal variables that still contain most of the information
in the original data set.
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Procedure: nag prin comp

1 Description

nag prin comp calculates the principal component loadings and scores for a given (optionally weighted)
data matrix.

2 Usage

USE nag fac analysis

CALL nag prin comp(data, prin var [, optional arguments])

3 Arguments

Note. All array arguments are assumed-shape arrays. The extent in each dimension must be exactly that required by
the problem. Notation such as ‘x(n)’ is used in the argument descriptions to specify that the array x must have exactly n

elements.

This procedure derives the values of the following problem parameters from the shape of the supplied
arrays.

m ≥ 1 — the number of variables in the data matrix.

p ≥ 1 — the number of variables included in the analysis. If the optional argument var in comp

is not present then p = m, otherwise p = COUNT(var in comp).

n > p — the number of observations in the data matrix.

3.1 Mandatory Arguments

data(n,m) — real(kind=wp), intent(in)

Input: data(i, j) must contain the ith observation for the jth variable, for i = 1, 2, . . . , n and
j = 1, 2, . . . ,m.

prin var(p, 3) — real(kind=wp), intent(out)

Output: prin var(i, 1) contains the eigenvalue, γ2
i , associated with the ith principal component.

prin var(i, 2) contains the proportion of the variation explained by the ith principal component.
prin var(i, 3) contains the cumulative proportion of the variation explained by the first i principal
components.

3.2 Optional Arguments

Note. Optional arguments must be supplied by keyword, not by position. The order in which they are described below
may differ from the order in which they occur in the argument list.

matrix — character(len=1), intent(in), optional

Input: specifies which type of principal component analysis is to be carried out.

If matrix = 'C' or 'c', it is for a correlation matrix;

if matrix = 'S' or 's', it is for a standardised matrix with standardisations given by the
input array s;

if matrix = 'U' or 'u', it is for a sum of squares and cross-products matrix;

if matrix = 'V' or 'v', it is for a variance-covariance matrix.

Default: matrix = 'C'.
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std — character(len=1), intent(in), optional

Input: specifies how the principal component scores are to be standardised.

If std = 'U' or 'u', the sum of the squares of the scores for each principal component is equal
to the corresponding eigenvalue;

if std = 'S' or 's', the sum of the squares of the scores for each principal component is equal
to 1.0;

if std = 'E' or 'e', the variance of the scores for each principal component is equal to the
corresponding eigenvalue;

if std = 'Z' or 'z', the variance of the scores for each principal component is unity.

Default: std = 'U'.

var in comp(m) — logical, intent(in), optional

Input: the variables to be included in the model.

If var in comp(i) = .true., the ith variable is included in the calculations;

if var in comp(i) = .false., the ith variable is excluded from the calculations.

Default: all variables are included in the calculations.

wt(n) — real(kind=wp), intent(in), optional

Input: the weights, wi, i = 1, 2, . . . , n, that are associated with the observations.

Default: an unweighted analysis is performed.

Constraints: wt ≥ 0.

index(p) — integer, intent(out), optional

Output: the indices of the variables included in the calculations.

s(m) — real(kind=wp), intent(in), optional

Input: the standardisations to be used on the selected variables, if any. If matrix = 'S' or 's',
then s(i), where 1 ≤ i ≤ m, contains the standardisation to be used for the ith column of the
input array data.

Constraints: s must be present if matrix = 's' or 'S'. s(i) > 0.0, for i = 1, 2, . . . ,m and
var in comp(i) = .true..

score(n, p) — real(kind=wp), intent(out), optional

Output: the principal component scores. The jth column contains the scores for jth principal
component, and score(i, j) contains the score for the ith observation on the jth principal
component.

loading(p, p) — real(kind=wp), intent(out), optional

Output: the principal component loadings. The jth column contains the loadings for the jth
principal component, and loading(i, j) contains the loading of the ith variable included in the
calculations (the original index(i) variable), on the jth principal component.

chi stat(p) — real(kind=wp), intent(out), optional

Output: chi stat(i) contains the χ2-statistic for the ith principal component, that is the test for
the equality of the i, i+ 1, . . . , p eigenvalues.

sig chi stat(p) — real(kind=wp), intent(out), optional

Output: sig chi stat(i) contains significance level for the χ2-statistic for the ith principal
component.
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chi df(p) — integer, intent(out), optional

Output: chi df(i) contains the number of degrees of freedom associated with the ith χ2-statistic.

error — type(nag error), intent(inout), optional

The NAG fl90 error-handling argument. See the Essential Introduction, or the module document
nag error handling (1.2). You are recommended to omit this argument if you are unsure how to
use it. If this argument is supplied, it must be initialized by a call to nag set error before this
procedure is called.

4 Error Codes

Fatal errors (error%level = 3):

error%code Description

301 An input argument has an invalid value.

302 An array argument has an invalid shape.

303 Array arguments have inconsistent shapes.

305 Invalid absence of an optional argument.

320 The procedure was unable to allocate enough memory.

Failures (error%level = 2):

error%code Description

201 Cannot compute the principal components.

The singular value decomposition has failed to converge.

5 Examples of Usage

A complete example of the use of this procedure appears in Example 1 of this module document.

6 Further Comments

Principal component analysis is the same as the discrete Karhunen–Loeve expansion and therefore, within
a signal processing/pattern recognition context, this procedure can be used to perform data compression,
optimal pattern representation and feature extraction.

6.1 Mathematical Background

Let X be the n by p mean-centred data matrix derived from the original n by m data array data (n
observations on m variables). The n observations on the ith variable, xi, form the ith column of X and
the p by p sum of squares and cross-products matrix is C = XTX, and the sample variance-covariance
matrix is S = C/(n− 1).

The first principal component, z1 =

p
∑

i=1

a1ixi, is the linear combination of the variables that gives the

maximum variation. The vector a1 is such that a
T
1 Sa1 is maximized subject to a

T
1 a1 = 1.0. A second

principal component, z2 =

p
∑

i=1

a2ixi, is found such that a
T
2 Sa2 is maximized subject to a

T
2 a2 = 1.0

and aT
2 a1 = 0.0. This gives the linear combination of variables that is orthogonal to the first principal

component and gives the maximum variation. Further principal components are derived in a similar
way.
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The vectors a1, a2, . . . , ak are the eigenvectors of the matrix S and associated with each eigenvector is
the eigenvalue, γ2

i . The value of γ
2
i /Σγ

2
i gives the proportion of variation explained by the ith principal

component. Some authors define the loading to be ajγj . Alternatively, the ai can be considered as the
right singular vectors in a singular value decomposition (SVD), with singular values γi, of the scaled,

mean-centred data matrix X/
√

(n− 1). This latter approach is used in this procedure.

Principal component analysis is often used to reduce the dimension of a data set, replacing a large
number of correlated variables with a smaller number of orthogonal variables that still contain most of
the information in the original data set.

The choice of the number of dimensions required is usually based on the amount of variation accounted
for by the leading principal components. If k principal components are selected then a test of the equality
of the remaining p− k eigenvalues is

(n− (2p+ 5)/6)

(

−
p
∑

i=k+1

log(γi) + (p− k) log

(

p
∑

i=k+1

γi/(p− k)

))

which has, asymptotically, a χ2-distribution with 1

2
(p− k − 1)(p− k + 2) degrees of freedom.

The case k = 0 tests for equality of all eigenvalues; if all eigenvalues are not significantly different,
then the original variables are independent, and principal component analysis has no advantage over
examining the original variables. For k = 1, 2, . . . , p− 2, the test for quality of the remaining eigenvalues
indicates that if any more principal components are to be considered then they all should be considered;
that is, there is no advantage in including only some of the remaining components.

Instead of variance-covariance matrix the correlation matrix may be used. This means that the variables
are standardised to have the same variance and so can be useful if the variables are measured on different
scales. If the correlation matrix is used, the χ2-approximation for the statistic given above is not valid.
Alternatively the unscaled sum of squares and cross-products matrix or an externally standardised sums
of squares and cross-products matrix may be used.

The principal component scores are the values of the principal component variables for the observations.
These scores can be standardised so that either their variance or the sum of the squares for each principal
component is equal to 1.0 or the corresponding eigenvalue.

Weights can be used with the analysis, in which case the data matrix is first centred about the weighted
means and then each row is scaled by an amount

√
wi, where wi is the weight for the ith observation.

For the variance-covariance matrix the divisor (n− 1) is replaced by
n
∑

i=1

wi − 1.

6.2 Algorithmic Detail

The loadings and scores are obtained by performing an SVD on the appropriately scaled n by p data
matrix, X̃. For instance if the mean-centred data matrix is X and matrix = 'U', then X̃ = X, while if
matrix = 'V', then X̃ = X/

√

(n− 1) in the unweighted case.

Let X̃ = UΣV T , where Σ is a diagonal matrix containing the singular values γj , U is a n by p orthogonal

matrix, and V is a p by p orthogonal matrix. The columns of V , aj , are the eigenvectors of X̃
T X̃ and the

columns of U are the scores standardised so that their sum of squares equals unity. Other standardisations
are obtained by scaling U as appropriate.

6.3 Accuracy

As this procedure uses SVD of the data matrix, it will be less affected by ill conditioned problems than
traditional methods which use an eigenvalue decomposition of the variance-covariance matrix.
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Example 1: Calculation of the Principal Components

and Scores

A data set is taken from Cooley and Lohnes [1]; it consists of ten observations on three variables.
The unweighted principal components based on the variance-covariance matrix are computed and the
unstandardised principal component scores requested.

1 Program Text

Note. The listing of the example program presented below is double precision. Single precision users are referred to
Section 5.2 of the Essential Introduction for further information.

PROGRAM nag_fac_analysis_ex01

! Example Program Text for nag_fac_analysis

! NAG fl90, Release 4. NAG Copyright 2000.

! .. Use Statements ..

USE nag_fac_analysis, ONLY : nag_prin_comp

USE nag_examples_io, ONLY : nag_std_in, nag_std_out

USE nag_write_mat, ONLY : nag_write_gen_mat

! .. Implicit None Statement ..

IMPLICIT NONE

! .. Intrinsic Functions ..

INTRINSIC KIND

! .. Parameters ..

INTEGER, PARAMETER :: wp = KIND(1.0D0)

! .. Local Scalars ..

INTEGER :: i, k, m, n

CHARACTER (1) :: matrix

! .. Local Arrays ..

INTEGER, ALLOCATABLE :: chi_df(:)

REAL (wp), ALLOCATABLE :: chi_stat(:), data(:,:), loading(:,:), &

prin_var(:,:), score(:,:), sig_chi_stat(:)

! .. Executable Statements ..

WRITE (nag_std_out,*) &

’Example Program Results for nag_fac_analysis_ex01’

! Skip heading in data file

READ (nag_std_in,*)

READ (nag_std_in,*) matrix, n, m

k = m ! all variables are inculded in the

! computation

ALLOCATE (data(n,m),score(n,k),loading(k,k),prin_var(k,3),chi_df(k), &

chi_stat(k),sig_chi_stat(k)) ! Allocate storage

READ (nag_std_in,*) (data(i,:),i=1,n)

CALL nag_prin_comp(data,prin_var,matrix=matrix,score=score, &

loading=loading,chi_stat=chi_stat,chi_df=chi_df, &

sig_chi_stat=sig_chi_stat)

WRITE (nag_std_out,*)

WRITE (nag_std_out,*) &

’Eigenvalues Fractional Cumulative Chisq Sig DF’

WRITE (nag_std_out,*) ’ variation variation’

DO i = 1, k

WRITE (nag_std_out,’(5f12.4,i8)’) prin_var(i,:), chi_stat(i), &

sig_chi_stat(i), chi_df(i)

END DO
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Example 1 Multivariate Analysis

WRITE (nag_std_out,*)

CALL nag_write_gen_mat(loading,format=’f12.4’,title=’Loadings’)

WRITE (nag_std_out,*)

CALL nag_write_gen_mat(score,format=’f12.4’,title= &

’Principal component scores’)

DEALLOCATE (data,score,loading,prin_var,chi_stat,sig_chi_stat, &

chi_df) ! Deallocate storage

END PROGRAM nag_fac_analysis_ex01

2 Program Data

Example Program Data for nag_fac_analysis_ex01

V 10 3 : matrix (type of analysis), n, m

7.0 4.0 3.0

4.0 1.0 8.0

6.0 3.0 5.0

8.0 6.0 1.0

8.0 5.0 7.0

7.0 2.0 9.0

5.0 3.0 3.0

9.0 5.0 8.0

7.0 4.0 5.0

8.0 2.0 2.0 :data

3 Program Results

Example Program Results for nag_fac_analysis_ex01

Eigenvalues Fractional Cumulative Chisq Sig DF

variation variation

8.2739 0.6515 0.6515 8.6127 0.1255 5

3.6761 0.2895 0.9410 4.1183 0.1276 2

0.7499 0.0590 1.0000 0.0000 0.0000 0

Loadings

0.1376 0.6990 -0.7017

0.2505 0.6609 0.7075

-0.9583 0.2731 0.0842

Principal component scores

0.7171 -0.0577 0.0356

-1.2681 -0.9625 0.1701

-0.0511 -0.3290 0.0898

1.5688 0.4338 0.2172

-0.4313 0.7597 0.1497

-1.3664 0.0479 -0.2677

0.5419 -0.7440 0.2676

-0.7048 1.0837 -0.0561

0.0783 0.1243 0.0917

0.9155 -0.3563 -0.6980
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