hide long namesshow long names
hide short namesshow short names
Integer type:  int32  int64  nag_int  show int32  show int32  show int64  show int64  show nag_int  show nag_int

PDF version (NAG web site, 64-bit version, 64-bit version)
Chapter Contents
Chapter Introduction
NAG Toolbox

NAG Toolbox: nag_linsys_complex_posdef_tridiag_solve (f04cg)

 Contents

    1  Purpose
    2  Syntax
    7  Accuracy
    9  Example

Purpose

nag_linsys_complex_posdef_tridiag_solve (f04cg) computes the solution to a complex system of linear equations AX=B, where A is an n by n Hermitian positive definite tridiagonal matrix and X and B are n by r matrices. An estimate of the condition number of A and an error bound for the computed solution are also returned.

Syntax

[d, e, b, rcond, errbnd, ifail] = f04cg(d, e, b, 'n', n, 'nrhs_p', nrhs_p)
[d, e, b, rcond, errbnd, ifail] = nag_linsys_complex_posdef_tridiag_solve(d, e, b, 'n', n, 'nrhs_p', nrhs_p)

Description

A is factorized as A=LDLH, where L is a unit lower bidiagonal matrix and D is a real diagonal matrix, and the factored form of A is then used to solve the system of equations.

References

Anderson E, Bai Z, Bischof C, Blackford S, Demmel J, Dongarra J J, Du Croz J J, Greenbaum A, Hammarling S, McKenney A and Sorensen D (1999) LAPACK Users' Guide (3rd Edition) SIAM, Philadelphia http://www.netlib.org/lapack/lug
Higham N J (2002) Accuracy and Stability of Numerical Algorithms (2nd Edition) SIAM, Philadelphia

Parameters

Compulsory Input Parameters

1:     d: – double array
The dimension of the array d must be at least max1,n
Must contain the n diagonal elements of the tridiagonal matrix A.
2:     e: – complex array
The dimension of the array e must be at least max1,n-1
Must contain the n-1 subdiagonal elements of the tridiagonal matrix A.
3:     bldb: – complex array
The first dimension of the array b must be at least max1,n.
The second dimension of the array b must be at least max1,nrhs_p.
The n by r matrix of right-hand sides B.

Optional Input Parameters

1:     n int64int32nag_int scalar
Default: the first dimension of the array b.
The number of linear equations n, i.e., the order of the matrix A.
Constraint: n0.
2:     nrhs_p int64int32nag_int scalar
Default: the second dimension of the array b.
The number of right-hand sides r, i.e., the number of columns of the matrix B.
Constraint: nrhs_p0.

Output Parameters

1:     d: – double array
The dimension of the array d will be max1,n
If ifail=0 or n+1, d stores the n diagonal elements of the diagonal matrix D from the LDLH factorization of A.
2:     e: – complex array
The dimension of the array e will be max1,n-1
If ifail=0 or n+1, e stores the n-1 subdiagonal elements of the unit lower bidiagonal matrix L from the LDLH factorization of A. (e can also be regarded as the conjugate of the superdiagonal of the unit upper bidiagonal factor U from the UHDU factorization of A.)
3:     bldb: – complex array
The first dimension of the array b will be max1,n.
The second dimension of the array b will be max1,nrhs_p.
If ifail=0 or n+1, the n by r solution matrix X.
4:     rcond – double scalar
If ifail=0 or n+1, an estimate of the reciprocal of the condition number of the matrix A, computed as rcond=1/A1,A-11.
5:     errbnd – double scalar
If ifail=0 or n+1, an estimate of the forward error bound for a computed solution x^, such that x^-x1/x1errbnd, where x^ is a column of the computed solution returned in the array b and x is the corresponding column of the exact solution X. If rcond is less than machine precision, then errbnd is returned as unity.
6:     ifail int64int32nag_int scalar
ifail=0 unless the function detects an error (see Error Indicators and Warnings).

Error Indicators and Warnings

Errors or warnings detected by the function:

Cases prefixed with W are classified as warnings and do not generate an error of type NAG:error_n. See nag_issue_warnings.

   ifail>0andifailn
The principal minor of order _ of the matrix A is not positive definite. The factorization has not been completed and the solution could not be computed.
W  ifail=n+1
A solution has been computed, but rcond is less than machine precision so that the matrix A is numerically singular.
   ifail=-1
Constraint: n0.
   ifail=-2
Constraint: nrhs_p0.
   ifail=-6
Constraint: ldbmax1,n.
   ifail=-99
An unexpected error has been triggered by this routine. Please contact NAG.
   ifail=-399
Your licence key may have expired or may not have been installed correctly.
   ifail=-999
Dynamic memory allocation failed.
The double allocatable memory required is n. In this case the factorization and the solution X have been computed, but rcond and errbnd have not been computed.

Accuracy

The computed solution for a single right-hand side, x^, satisfies an equation of the form
A+E x^=b,  
where
E1=Oε A1  
and ε is the machine precision. An approximate error bound for the computed solution is given by
x^-x1 x1 κA E1 A1 ,  
where κA=A-11A1, the condition number of A with respect to the solution of the linear equations. nag_linsys_complex_posdef_tridiag_solve (f04cg) uses the approximation E1=εA1 to estimate errbnd. See Section 4.4 of Anderson et al. (1999) for further details.

Further Comments

The total number of floating-point operations required to solve the equations AX=B is proportional to nr. The condition number estimation requires On floating-point operations.
See Section 15.3 of Higham (2002) for further details on computing the condition number of tridiagonal matrices.
The real analogue of nag_linsys_complex_posdef_tridiag_solve (f04cg) is nag_linsys_real_posdef_tridiag_solve (f04bg).

Example

This example solves the equations
AX=B,  
where A is the Hermitian positive definite tridiagonal matrix
A= 16.0i+00.0 16.0+16.0i 0.0i+0.0 0.0i+0.0 16.0-16.0i 41.0i+00.0 18.0-9.0i 0.0i+0.0 0.0i+00.0 18.0+09.0i 46.0i+0.0 1.0-4.0i 0.0i+00.0 0.0i+00.0 1.0+4.0i 21.0i+0.0  
and
B= 64.0+16.0i -16.0-32.0i 93.0+62.0i 61.0-66.0i 78.0-80.0i 71.0-74.0i 14.0-27.0i 35.0+15.0i .  
An estimate of the condition number of A and an approximate error bound for the computed solutions are also printed.
function f04cg_example


fprintf('f04cg example results\n\n');

% Solve complex Ax = b for Hermitian tridiagonal A 
% with error bound and condition number.
d = [ 16         41         46        21];
e = [ 16 + 16i   18 -  9i    1 - 4i     ];
b = [ 64 + 16i, -16 - 32i;
      93 + 62i,  61 - 66i;
      78 - 80i,  71 - 74i;
      14 - 27i,  35 + 15i];

[d, e, x, rcond, errbnd, ifail] = ...
  f04cg(d, e, b);

disp('Solution');
disp(x);
disp('Estimate of condition number');
fprintf('%10.1f\n\n',1/rcond);
disp('Estimate of error bound for computed solutions');
fprintf('%10.1e\n\n',errbnd);


f04cg example results

Solution
   2.0000 + 1.0000i  -3.0000 - 2.0000i
   1.0000 + 1.0000i   1.0000 + 1.0000i
   1.0000 - 2.0000i   1.0000 - 2.0000i
   1.0000 - 1.0000i   2.0000 + 1.0000i

Estimate of condition number
    9206.6

Estimate of error bound for computed solutions
   1.0e-12


PDF version (NAG web site, 64-bit version, 64-bit version)
Chapter Contents
Chapter Introduction
NAG Toolbox

© The Numerical Algorithms Group Ltd, Oxford, UK. 2009–2015